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a b s t r a c t

This paper proposes a subspace clustering algorithm with automatic feature grouping for clustering
high-dimensional data. In this algorithm, a new component is introduced into the objective function to
capture the feature groups and a new iterative process is defined to optimize the objective function so
that the features of high-dimensional data are grouped automatically. Experiments on both synthetic
data and real data show that the new algorithm outperforms the FG-k-means algorithm in terms of
accuracy and choice of parameters.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the major tasks of data mining, data clustering is a
process that aims to identify homogeneous groups or clusters of
objects from a set of objects. Given a set of multi-dimensional data
points, clustering algorithms can be used to find a partition of the
points into clusters such that the points within a cluster are similar
to each other and the points from different clusters are quite
distinct [1,2]. Data clustering can be applied to a wide range of
areas such as bioinformatics [3], pattern recognition [4], health
care [5], insurance [6], to just name a few.

In the past six decades, many clustering algorithms have been
developed. The k-means algorithm is one of the oldest and most
widely used clustering algorithm [7]. In the k-means algorithm, the
number of clusters is a required input. Given a dataset and a number k
of clusters, the k-means algorithm starts from k initial cluster centers
and then repeats updating the cluster memberships and the cluster
centers until some stop criterion is met [8]. A key problem of the
k-means algorithm and other conventional clustering algorithms is
that they suffer from the curse of dimensionality. In high-dimensional
data, clusters are usually embedded in subspaces of the original data
space and different clusters might be embedded in different sub-
spaces. As a result, these conventional clustering algorithms are not
efficient to deal with high-dimensional data.

To address this problem, subspace clustering algorithms have
been developed to identify clusters embedded in subspaces of the
original data space. Agrawal et al. proposed a clustering algorithm
called CLIQUE to find dense subspace clusters [9]. Parsons et al.
presented a review of subspace clustering algorithms developed
up to that time [10]. In [11], Huang et al. proposed a subspace
clustering algorithm called W-k-means by introducing feature
weighting to the k-means algorithm. Gan and Wu proposed the
FSC algorithm and proved its convergence [12]. In [13], Jing et al.
proposed a subspace clustering algorithm named EWKM by
extending the k-means algorithm to include weight entropy in
the objective function. In [14], Domeniconi et al. proposed the LAC
algorithm, which is similar to EWKM. Kriegel et al. presented a
comprehensive survey of high-dimensional data clustering,
including subspace clustering [15]. In [16], Deng et al. extended
the EWKM algorithm to a new subspace clustering algorithm
named EEW-SC by considering between-cluster separation. In
[17], Favaro et al. treated the subspace clustering problem as a
rank minimization problem and proposed a closed-form solution.
Müller et al. studied the scalability issue of clustering high-
dimensional data and proposed a density-based subspace cluster-
ing algorithm [18]. Elhamifar and Vidal presented a sparse sub-
space clustering (SSC) algorithm using the idea of sparse repr-
esentation [19]. The correctness of the SSC algorithm was proved
by Soltanolkotabi et al. [20]. Timmerman et al. proposed a sub-
space k-means algorithm by modeling the centers and cluster
residuals in reduced spaces [21]. In [22], Mcwilliams and Montana
proposed a predictive subspace clustering (PSC) algorithm by
assuming that each cluster can be approximated well by a linear
subspace estimated by a principal component analysis. Zhu et al.
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proposed online subspace clustering algorithm to clustering data
streams [23]. In [24], the authors proposed a subspace clustering
algorithm based on affinity propagation.

The aforementioned subspace clustering algorithms can be
divided into two categories: hard subspace clustering and soft
subspace clustering. A hard subspace clustering algorithm deter-
mines the exact subspaces in which clusters are embedded. A soft
subspace clustering algorithm assigns weights to features and
identify subspaces with large weights. One major challenge of the
soft subspace clustering algorithms mentioned above is that the
individual feature weights are sensitive to noise and missing
values. To address this problem, Chen et al. introduced the idea
of assigning weights to feature groups and proposed a new
subspace clustering algorithm called FG-k-mean [25]. The FG-k-
means algorithm is shown to outperform the k-means algorithm
and several other subspace clustering algorithms such as W-k-
means [11], LAC [14], and EWKM [13].

However, the FG-k-means algorithm requires that the feature
groups are determined before the data is clusterized. In many
cases, we do not know the group information of the features that
describe a high-dimensional dataset. In this paper, we propose a
subspace clustering algorithm, referred to as AFG-k-means, that is
able to determine the feature groups automatically during the
clustering process. The AFG-k-means algorithm extends the
k-means algorithm by incorporating automatic feature group
selection.

The remaining of the paper is organized as follows. In Section 2,
we review the FG-k-means algorithm. In Section 3, we present the
new subspace clustering algorithm, i.e., the AFG-k-means algo-
rithm. In Section 4, we demonstrate the performance of the AFG-
k-means algorithm using both synthetic data and real data. Section
5 concludes the paper with some remarks.

2. Related work

In this section, we give a brief introduction to the FG-k-means
algorithm [25]. To describe these algorithms, we let X ¼
fx1; x2;…; xng be a dataset of n points, each of which is described
by a set of m features: A¼ fA1;A2;…;Amg.

In the FG-k-means algorithm, the features that describe the
high dimensional data are divided into feature groups, each of
which is associated with a group weight. Within a feature group,
each feature is also associated with a feature weight. The two
types of weights are updated in the clustering process to identify
important feature groups and individual features in each cluster.

Suppose that the set of features is divided into T groups
G¼ fG1;G2;…;GT g such that Gta∅, Gt \ Gs ¼∅ for 1rt; srT ;
tas, and ⋃T

t ¼ 1Gt ¼ A. To cluster X into k clusters, the FG-k-means
algorithm minimizes the following objective function:

PðU; Z;V ;WÞ ¼
Xk
l ¼ 1

Xn
i ¼ 1

XT
t ¼ 1

X
jAGt

uilwltvljdðxij; zljÞ
2
4

þλ
XT
t ¼ 1

wlt log ðwltÞþη
Xm
j ¼ 1

vlj log ðvljÞ
3
5 ð1Þ

subject to the following conditions:

Xk
l ¼ 1

uil ¼ 1; i¼ 1;2;…;n; uilAf0;1g ð2aÞ

XT
t ¼ 1

wlt ¼ 1; l¼ 1;2;…; k; wlt40 ð2bÞ

X
jAGt

vlj ¼ 1; l¼ 1;2;…; k; t ¼ 1;2;…; T ; vlj40; ð2cÞ

where U ¼ ðuilÞn�k is a hard partition matrix, Z ¼ fz1; z2;…; zkg is a
set of k cluster centers, V ¼ ðvljÞk�m and W ¼ ðwltÞk�T are the two
weight matrices mentioned before, λ and η are two positive
parameters, and dðxij; zljÞ is a distance measure between the i-th
object and the center of the l-th cluster in the j-th feature. If the j-
th feature is numeric, the distance measure is the square Euclidean
distance. If the j-th feature is categorical, the distance measure is
just the simple matching distance.

In the FG-k-means algorithm, the objective function given in
Eq. (1) is optimized as follows. Given Z ¼ Ẑ , V ¼ V̂ , and W ¼ Ŵ , the
hard partition matrix U that minimizes the objective function is
given by

uil ¼
1 if DilrDis for 1rsrk;
0 if otherwise;

(
ð3Þ

where Dis ¼
PT

t ¼ 1 ŵst
P

jAGt
v̂sjdðxij; ẑsjÞ. Given U ¼ Û , V ¼ V̂ , and

W ¼ Ŵ , the set Z of cluster centers that minimizes the objective
function is given by

zlj ¼
Pn

i ¼ 1 ûilxijPn
i ¼ 1 ûil

: ð4Þ

Given U ¼ Û , Z ¼ Ẑ , and W ¼ Ŵ , the weight matrix V that mini-
mizes the objective function is given by

vlj ¼
exp �Elj

η

� �
P

hAGt
exp �Elh

η

� �; ð5Þ

where Elj ¼
Pn

i ¼ 1 ûilŵltdðxij; ẑ ljÞ with t being the index of the
feature group to which the j-th feature is assigned, i.e., AjAGt .
Given U ¼ Û , Z ¼ Ẑ , and V ¼ V̂ , the weight matrix W that mini-
mizes the objective function is given by

wlt ¼
exp �Flt

λ

� �
PT

s ¼ 1 exp �Fls
λ

� �; ð6Þ

where Flt ¼
Pn

i ¼ 1 ûil
P

jAGt
v̂ljdðxij; ẑ ljÞ.

Note that in the FG-k-means algorithm, the feature group G is
given as an input. The feature group weights are automatically
calculated by the algorithm.

3. The AFG-k-means algorithm

In this section, we present the AFG-k-means algorithm that
incorporates automatic feature grouping in the clustering process.
To describe the algorithm, we let X ¼ fx1; x2;…; xng be a dataset of
n points, each of which is described by a set of m numerical
features: A¼ fA1;A2;…;Amg. Let k be the desired number of
clusters and let T be the desired number of feature groups.

The objective function of the AFG-k-means algorithm is defined
as

Q ðU; Z;W ;G;V ;ΓÞ ¼
Xk
l ¼ 1

Xn
i ¼ 1

uil

Xm
j ¼ 1

w2
ljðxij�zljÞ2þϵ1

Xk
l ¼ 1

Xm
j ¼ 1

w2
lj

þβ
XT
t ¼ 1

Xm
j ¼ 1

gjt
Xk
l ¼ 1

γ2ltðwlj�vltÞ2þϵ2
Xk
l ¼ 1

XT
t ¼ 1

γ2lt

0
@

1
A;

ð7Þ
where U ¼ ðuilÞn�k is an n� k matrix of binary numbers. If point xi

belongs to the l-th cluster, then uil ¼ 1; otherwise, uil ¼ 0.
Z ¼ fz1; z2;…; zkg is a set of k cluster centers. W ¼ ðwljÞk�m is a k�
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m matrix of positive real numbers that satisfies the following
conditions:

Xm
j ¼ 1

wlj ¼m; l¼ 1;2;…; k: ð8Þ

G¼ ðgjtÞm�T is an m� T matrix of binary numbers. If the j-th
feature belongs to the t-th group, then gjt ¼ 1; otherwise, gjt ¼ 0.
V ¼ ðvltÞk�T is a k� T matrix of real numbers. Γ ¼ ðγltÞk�T is a k� T
matrix of positive real numbers that satisfies the following condi-
tions:

Xk
l ¼ 1

γlt ¼ k; t ¼ 1;2;…; T : ð9Þ

ϵ1 is a nonnegative regularization constant. ϵ2 is a nonnegative
regularization constant. β is a nonnegative constant. xij denotes the
value of xi in the j-th feature. zlj denotes the value of zl in the j-th
feature. The AFG-k-means algorithm minimizes this objective
function to find optimal values for U, Z, W, G, V, and Γ. Comparing
the objective function of the FG-k-means algorithm given in Eq. (1)
and that of the AFG-k-means algorithm given in Eq. (7), we see
that the AFG-k-means algorithm includes a component in its
objective function to group features by the individual feature
weights. In the AFG-k-means algorithm, two features are assigned
to the same group if the individual feature weight patterns are
similar.

Here the second component of the objective function is the
objective function of the FSC algorithm for the dataset consisting
of feature weights:

w11 w21 ⋯ wk1

w12 w22 ⋯ wk2

⋮ ⋮ ⋱ ⋮
w1m w2m ⋯ wkm

0
BBBB@

1
CCCCA: ð10Þ

which has m points described by k features.
The objective function given in Eq. (7) can be minimized

iteratively as follows. At the beginning of the algorithm, we
initialize Z by selecting randomly k points from the dataset X
and initialize W by equal values, i.e., wlj ¼ 1 for l¼ 1;2;…; k and
j¼ 1;2;…;m. Since the weight matrix W has equal values, the
objective function value is independent of G. After initialization,
the algorithm proceeds to minimize the objective function accord-
ing to the following theorems.

Theorem 1 (Update U). Given Z ¼ Ẑ , W ¼ Ŵ , G¼ Ĝ, V ¼ V̂ , and
Γ ¼ Γ̂ , the partition matrix U that minimizes the objective function
given in Eq. (7) is given by

uil ¼
1 if DilrDih for all h¼ 1;2;…; k;

0 if otherwise;

(
ð11Þ

where Dil ¼
Pm

j ¼ 1 ŵ
2
ljðxij� ẑ ljÞ2, i¼ 1;2;…;n, l¼ 1;2;…; k.

Theorem 1 says that point xi should be assigned to a cluster
such that xi is closest to the cluster's center. The proof of Theorem
1 is straightforward.

Theorem 2 (Update Z). Given U ¼ Û , W ¼ Ŵ , G¼ Ĝ, V ¼ V̂ , and
Γ ¼ Γ̂ , the set Z of cluster centers that minimizes the objective
function given in Eq. (7) is given by

zlj ¼
Pn

i ¼ 1 ûilxijPn
i ¼ 1 ûil

; i¼ 1;2;…;n; j¼ 1;2;…;m: ð12Þ

From Theorem 2 we see that updating the cluster centers is
similar to that of the k-means algorithm. Updating the cluster

centers is independent of the weight matrix W, feature member-
ship matrix G, and feature center V.

Theorem 3 (Update W). Given U ¼ Û , Z ¼ Ẑ , G¼ Ĝ, V ¼ V̂ , and
Γ ¼ Γ̂ , the weight matrix W that minimizes the objective function
given in Eq. (7) is given by

wlj ¼
β
PT

t ¼ 1 ĝ jt γ̂
2
lt v̂ lt�

1
2
λl

β
PT

t ¼ 1 ĝ jt γ̂
2
ltþElj

¼ β
PT

t ¼ 1 ĝ jt γ̂
2
lt v̂lt

β
PT

t ¼ 1 ĝ jt γ̂
2
ltþElj

�
�mþ Pm

h ¼ 1 β
PT

t ¼ 1 ĝ htγ
2
ltþElh

� ��1
β
PT

t ¼ 1 ĝhtγ
2
lt v̂ lt

β
PT

t ¼ 1 ĝ jt γ̂
2
ltþElj

� �Pm
h ¼ 1 β

PT
t ¼ 1 ĝ htγ

2
ltþElh

� ��1 ð13Þ

where

Elj ¼ ϵ1þ
Xn
i ¼ 1

ûilðxij� ẑ ljÞ2; l¼ 1;2;…; k; j¼ 1;2;…;m; ð14Þ

and

λl ¼
�2mþ2

Pm
h ¼ 1 β

PT
t ¼ 1 ĝhtγ

2
ltþElh

� ��1
β
PT

t ¼ 1 ĝhtγ
2
lt v̂ltPm

h ¼ 1 β
PT

t ¼ 1 ĝhtγ
2
ltþElh

� ��1 ð15Þ

for l¼ 1;2;…; k.

Proof. To prove Theorem 3, we use the method of Lagrange
multiplier. To minimize the objective function given in Eq. (7)
subject to the constraint given in Eq. (8), we minimize the
following unconstrained objective function:

Q1ðÛ ; Ẑ ;W ; Ĝ; V̂ ; Γ̂ ; λÞ

¼
Xk
l ¼ 1

Xn
i ¼ 1

ûil

Xm
j ¼ 1

w2
ljðxij� ẑ ljÞ2þϵ1

Xk
l ¼ 1

Xm
j ¼ 1

w2
lj

þβ
XT
t ¼ 1

Xm
j ¼ 1

ĝ jt

Xk
l ¼ 1

γ̂2ltðwlj� v̂ltÞ2þβϵ2
Xk
l ¼ 1

XT
t ¼ 1

γ̂2lt

þ
Xk
l ¼ 1

λl
Xm
j ¼ 1

wlj�m

0
@

1
A; ð16Þ

where λ¼ ðλ1; λ2;…; λkÞ. By fixing l, taking derivative of Q1 with
respect to wl1, wl2, …, wlm, and λl, and equating the derivatives to
zero, we get

∂Q1

∂wlj
¼

Xn
i ¼ 1

ûil2wljðxij� ẑ ljÞ2þ2ϵ1wlj

þ2β
XT
t ¼ 1

ĝ jt γ̂
2
ltðwlj� v̂ltÞþλl ¼ 0; j¼ 1;2;…;m ð17Þ

and

∂Q1

∂λl
¼

Xm
j ¼ 1

wlj�m¼ 0: ð18Þ

Solving the above linear equation system, we obtain

wlj ¼
2β

PT
t ¼ 1 ĝ jt γ̂

2
lt v̂lt�λl

2β
PT

t ¼ 1 ĝ jt γ̂
2
ltþ2Elj

; ð19Þ

and

Xm
j ¼ 1

2β
PT

t ¼ 1 ĝ jt γ̂
2
lt v̂ lt�λl

2β
PT

t ¼ 1 ĝ jt γ̂
2
ltþ2Elj

¼m: ð20Þ

The results follow by rearranging the terms in the above
equation. □
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From Theorem 3 we see that the AFG-k-means algorithm
reduces to the W-k-means algorithm [11] when β-0. When
β-1, we have

wlj ¼
PT

t ¼ 1 ĝ jt γ̂
2
lt v̂ltPT

t ¼ 1 ĝ jt γ̂
2
lt

�
�mþ Pm

h ¼ 1
PT

t ¼ 1 ĝhtγ
2
lt

� ��1 PT
t ¼ 1 ĝhtγ

2
lt v̂ ltPT

t ¼ 1 ĝ jt γ̂
2
lt

� �Pm
h ¼ 1

PT
t ¼ 1 ĝhtγ

2
lt

� ��1

ð21Þ

which shows that features in the same group have the same
weight.

Theorem 4 (Update G). Given U ¼ Û , Z ¼ Ẑ , W ¼ Ŵ , V ¼ V̂ , Γ ¼ Γ̂ ,
and β40, the feature membership matrix G that minimizes the

objective function given in Eq. (7) is given by

gjt ¼
1 if FjtrFjs for all s¼ 1;2;…; T ;

0 if otherwise;

(
ð22Þ

where

Fjt ¼
Xk
l ¼ 1

γ̂2ltðŵlj� v̂ltÞ2; j¼ 1;2;…;m; t ¼ 1;2;…; T : ð23Þ

If β¼0, then G has no impact on the objective function. In this case,
we just set G by assigning all features into one group.

Similar to Theorem 1, Theorem 4 can be proved straightforwardly.
Theorem 4 shows that updating G depends only on W and V.

Theorem 5 (Update V). Given U ¼ Û , Z ¼ Ẑ , W ¼ Ŵ , Γ ¼ Γ̂ , and
β40, the matrix V that minimizes the objective function given in Eq.
(7) is given by

vlt ¼
Pm

j ¼ 1 ĝ jtŵljPm
j ¼ 1 ĝ jt

; l¼ 1;2;…; k; t ¼ 1;2;…; T : ð24Þ

If
Pm

j ¼ 1 ĝ jt ¼ 0 (i.e., the t-th feature group is empty), then we set
Vlt ¼ 0. If β¼0, then V has no impact on the objective function. In this
case, we also set all elements of V to be zero.
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Fig. 1. The average accuracy of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the first synthetic dataset. (a) The average corrected Rand indices
of the AFG-k-means algorithm with k¼3, T¼3, and default values for other parameters. (b) The average corrected Rand indices of the FG-k-means algorithm with the
corrected feature groups as input.

Table 1
Default values for some parameters required by the
AFG-k-means algorithm.

Parameter Default Value

β 1
ϵ1 0.0001
ϵ2 0.0001
Nmax 100
δ 10�6

Table 2
The results of a single run of the AFG-k-means algorithm on the first synthetic dataset. (a) The confusion matrix of the given clusters and the found clusters. (b) The confusion
matrix of the given feature groups and the found feature groups. (c) The feature group centers V. (d) The feature group weights Γ. In this run, we used k¼3, T¼3, β¼3, and
default values for other parameters.

A B C G1 G2 G3

1 0 2000 0 1 0 40 0
2 2000 0 0 2 40 0 0
3 0 0 1000 3 0 0 120

(a) (b)

Feature Group Centers, V Feature Group Centers, Γ

1 0.7277 4.1622 0.0367 1 0.3441 0.006 2.5231
2 0.2718 4.4024 0.1086 2 2.6521 0.0035 0.20831
3 4.6651 0.1182 0.0722 3 0.0038 2.9906 0.2685

(c) (d)
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Theorem 6 (Update Γ). Given U ¼ Û , Z ¼ Ẑ , W ¼ Ŵ , G¼ Ĝ, V ¼ V̂ ,
and β40, the weight matrix Γ that minimizes the objective function
given in Eq. (7) is given by

γlt ¼
kPk

s ¼ 1
Hlt

Hst

; ð25Þ

where

Hlt ¼ ϵ2þ
Xm
j ¼ 1

ĝ jtðŵlj� v̂ltÞ2; l¼ 1;2;…; k; t ¼ 1;2;…; T : ð26Þ

If β¼0, then Γ has no impact on the objective function. In this case,
we set all elements of Γ to be one.
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Fig. 2. The average speed of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the first synthetic dataset with various parameter values. (a) The
average runtime (in seconds) of the AFG-k-means algorithmwith k¼3, T¼3, and default values for other parameters. (b) The average runtime (in seconds) of the FG-k-means
algorithm with the corrected feature groups as input.
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Fig. 3. The average accuracy of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the second synthetic dataset with various parameter values.
(a) The average corrected Rand indices of the AFG-k-means algorithm with k¼3, T¼3, and default values for other parameters. (b) The average corrected Rand indices of the
FG-k-means algorithm with the correct feature groups as input.
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Fig. 4. The average speed of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the second synthetic dataset with various parameter values. (a) The
average runtime (in seconds) of the AFG-k-means algorithmwith k¼3, T¼3, and default values for other parameters. (b) The average runtime (in seconds) of the FG-k-means
algorithm with the corrected feature groups as input.
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The pseudo-code of the AFG-k-means algorithm is shown in
Algorithm 1. The inputs to the algorithm include a dataset and
several parameters, which are the number of clusters, the number
of feature groups, β, ϵ1, ϵ2, Nmax, and δ. The last two parameters are
used to terminate the algorithm. The parameter Nmax is the
maximum number of iterations. The parameter δ is a small
positive constant. If the absolute change of the values of the first
objective function is less than δ, the algorithm is terminated. We
can choose the desired number of clusters and the number of
feature groups for the underlying dataset. For the other para-
meters (i.e., β, ϵ1, ϵ2, Nmax, and δ), we can use the default values
given in Table 1.

Algorithm 1. The AFG-k-means algorithm.

Input: X, k, T, β, ϵ1, ϵ2, Nmax, δ
Output: Optimal values of U, Z, W, G, and V

1 Initialize Zð0Þ by selecting k points from X randomly;
2 Set all initial elements in W ð0Þ, Γð0Þ, and V ð0Þ to one;
3 Update Uð0Þ according to Theorem 1;
4 Initialize Gð0Þ by assigning all features into one group;
5 s’0;
6 Q ð0Þ’0;
7 While True do
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

Update Zðsþ1Þ according to Theorem 2;
Update Uðsþ1Þ according to Theorem 1;
Update W ðsþ1Þ according to Theorem 3;
if s¼ 0 then
j InitializeV ð1Þ by selecting T columns fromW randomly;
else
j Update V ðsþ1Þ according to Theorem 5;
end
Update Gðsþ1Þ according to Theorem 4;
Update Γðsþ1Þ according to Theorem 6;
s’sþ1;

Q ðsþ1Þ’Q Uðsþ1Þ; Zðsþ1Þ;W ðsþ1Þ;Gðsþ1Þ;V ðsþ1Þ
� �

;

if jQ ðsþ1Þ �Q ðsÞjoδ or sZNmax then
j Break;
end

��������������������������������������
23 end

4. Numerical experiments

In this section, we present some numerical experiments to
demonstrate the performance of the AFG-k-means algorithm in
terms of discovering subspace clusters and identifying feature
groups associated with them. We use both synthetic data and real
data in these experiments.

4.1. Experiments on synthetic data

In this subsection, we use synthetic data to demonstrate the
performance of the AFG-k-means algorithm.

4.1.1. Synthetic data generation
We follow the idea given in [25] to generate subspace clusters

in feature groups. Suppose that we want to generate a dataset that
contains n points in an m-dimensional space and has k subspace
clusters in T feature groups. Let A¼ ðaltÞk�T a matrix of real
numbers and let B¼ ðbltÞk�T be a matrix of positive real numbers.

Let G¼ ðgjtÞm�T is a binary matrix indicating the feature groups. Let
U ¼ ðuilÞn�k is a binary matrix indicating the clusters. Then we can
generate n data points as follows:

xij ¼
Xk
l ¼ 1

uil

XT
t ¼ 1

gjt altþRijblt
� �

; ð27Þ

where Rij is a random number generated from the standard normal
distribution. Once we have the dataset, then we normalize dataset
such that each dimension has a standard deviation of one.

To generate a synthetic dataset using this method, we only
need to specify n, m, G, U, A, and B. From Eq. (27) we see that each
cluster may have different centers and that the points in each
cluster can have different dispersions in different feature groups.
We can change the input standard deviation matrix B to generate
subspace clusters in feature groups.

4.1.2. Results
We use the aforementioned method to generate two synthetic

datasets. The first dataset is generated with the following para-
meters: n¼5000, m¼200,

G¼ ff1;…;40g; f41;…;80g; f81;…;200gg;
U ¼ ff1;2;…;2000g; f2001;…;4000g; f4001;…;5000gg;

A¼
0 0 0
0 20 0
20 0 0

0
B@

1
CA; and B¼

1 5 3
1 3 5
5 1 3

0
B@

1
CA: ð28Þ

Here we use sets to represent the binary matrices G and U
to save spaces. The first dataset contains 5000 points, each of
which is described by 200 features. The features are divided into
3 groups. The dataset contains three clusters, which contain 2000,
2000, and 1000 points. The first cluster has relatively small
dispersions in the first and the third feature groups. The third
cluster has relatively small dispersions in the second and the third
feature groups.

To test the impact of the parameters β and ϵ1 on the perfor-
mance of the AFG-k-means algorithm, we applied the AFG-k-
means algorithm to the first synthetic data with β¼ 3i and ϵ1 ¼ 3j

for i; j¼ 0;1;…;9. For each combination of these values, we run the
algorithm 100 times with different seeds used to initialize
cluster centers and feature groups randomly. For comparison
purpose, we also applied the FG-k-means to the first synthetic
dataset with λ¼ 3i and η¼ 3j for i; j¼ 0;1;…;9. The average
accuracy of the two algorithms on the first synthetic dataset is
shown in Fig. 1. From Fig. 1, we see that the AFG-k-means
algorithm produces more accurate results than the FG-k-means
algorithm does. In addition, the AFG-k-means algorithm is less
sensitive to its parameters than the FG-k-means algorithm does.
As we can see from Fig. 1, the FG-k-means algorithm produced
more accurate results when the parameter λ was larger. If λ is
small, then the feature group weight is dominated by the feature
group with the smallest dispersion due to the property of
exponential normalization. If λ is large, the feature group weights
become approximately the same.

Table 2 shows the results of a single run of the AFG-k-means
algorithm on the first synthetic data with β¼3. From the first two
tables we see that the AFG-k-means algorithm recovered the
clusters and the feature groups correctly. From the third table,
we see that the relative magnitudes of the feature group centers in
each column match inversely with the relative magnitudes of the
corresponding standard deviations in B (see Eq. (28)). For example,
the first column of V is ð0:7277;0:2718;4:6651ÞT . From the first
two tables, we know that the first number 0.7277 corresponds to
b22 ¼ 3, the second number 0.2718 corresponds to b12 ¼ 5, and the
third number 4.6651 corresponds to b32 ¼ 1. From the fourth table,
we see that the relative magnitudes of the feature group weights
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in each column match the relative magnitudes of the correspond-
ing standard deviations in B.

The average speed of the two algorithms on the first synthetic
data is shown in Fig. 2, from which we see that the AFG-k-means
algorithm converged much faster than the FG-k-means algorithm
did. In addition, the average runtime of the FG-k-means algorithm
is also sensitive to the parameters λ and η. In the two algorithms,
we used the same criteria to terminate the iterative process.

To test the performance of the AFG-k-means algorithm on noise
data, we created the second synthetic data by adding normal noise
to 20% of the components of the first synthetic dataset. The noise
was generated from the standard normal distribution. The average
accuracy of the AFG-k-means algorithm and the FG-k-means
algorithm on the second synthetic dataset is shown in Fig. 3.
Comparing Figs. 1 and 3, we see that the average accuracy of the
two algorithm is not affected by the additional noises.

The average runtime of the AFG-k-means algorithm and the
FG-k-means algorithm on the second dataset are summarized in
Fig. 4. Comparing Figs. 2 and 4, we see that the average runtime of
the AFG-k-means algorithm is not affected by the additional
noises. However, the average runtime of the FG-k-means algo-
rithm increased a little bit.

We also tested the FG-k-means algorithm on the synthetic
datasets with incorrect input of feature groups. In particular, we
divided the features into three groups randomly in each run of the
FG-k-means algorithm. The average accuracy and speed are shown

in Figs. 5 and 6. From these figures we see that when incorrect
feature groups are input to the FG-k-means algorithm, the accu-
racy of the clustering results depends on the parameter η. In
general, the larger the parameter η, the more accurate the results.
To reduce the effect of wrong feature groups, the FG-k-means
algorithm requires larger values for η to make the individual
feature weights more uniform.

In summary, the experiments on synthetic data show that the
AFG-k-means algorithm produces more accurate results than the
FG-k-means algorithm does and the AFG-k-means algorithm is less
sensitive to its parameters than the FG-k-means is.

4.2. Experiments on real data

To compare the AFG-k-means algorithm and the FG-k-means
algorithm on real data, we obtained two gene expression datasets
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Fig. 5. The average accuracy and speed of 100 runs of the FG-k-means algorithm on the first synthetic dataset with various parameter values. In these runs, three feature
groups were randomly created. (a) The average corrected Rand indices. (b) The average runtime (in seconds).
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Fig. 6. The average accuracy and speed of 100 runs of the FG-k-means algorithm on the second synthetic dataset with various parameter values. In these runs, three feature
groups were randomly created. (a) The average corrected Rand indices. (b) The average runtime (in seconds).

Table 3
Two real gene expression datasets. The first real dataset has three known clusters
and the second real dataset contains two clusters.

Dataset Samples Attributes Cluster sizes

Alizadeh-2000-v2 62 2093 42, 9, 11
Gordon-2002 181 1626 31, 150
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from [3],1: the gene expression data from adult lymphoid malig-
nancies and the gene expression data from the lung cancer. Both
datasets have known labels. Table 3 shows the information of

the two real datasets. Since different attributes of the real
datasets have different ranges, we use the z-score method to
normalize all the attributes before applying the two algorithms to
the datasets.

We applied both the AFG-k-means algorithm and the FG-k-
means algorithm to the Alizadeh-2000-v2 dataset with various
parameter values. Unlike the synthetic datasets, the real datasets
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Fig. 7. The average accuracy of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the Alizadeh-2000-v2 dataset with various parameter values.
(a) The average corrected Rand indices of the AFG-k-means algorithm with k¼3, T¼3, and default values for other parameters. (b) The average corrected Rand indices of the
FG-k-means algorithm with random feature groups as input.
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Fig. 8. The average speed of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the Alizadeh-2000-v2 dataset with various parameter values. (a) The
average runtime (in seconds) of the AFG-k-means algorithmwith k¼3, T¼3, and default values for other parameters. (b) The average runtime (in seconds) of the FG-k-means
algorithm with random feature groups as input.
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Fig. 9. The average accuracy of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the Gordon-2002 dataset with various parameter values. (a) The
average corrected Rand indices of the AFG-k-means algorithm with k¼2, T¼3, and default values for other parameters. (b) The average corrected Rand indices of the FG-k-
means algorithm with the random feature groups as input.

1 The two datasets are available at http://bioinformatics.rutgers.edu/Static/
Supplements/CompCancer/datasets.htm.
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do not have the feature group information. As a result, we use
random feature groups in the FG-k-means algorithm. In particular,
we randomly divide the attributes into three groups. The average

accuracy of the two algorithm on the Alizadeh-2000-v2 dataset is
summarized in Fig. 7. From the figure we see that the AFG-k-
means algorithm produces slightly more accurate results than the
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Fig. 10. The average speed of 100 runs of the AFG-k-means algorithm and the FG-k-means algorithm on the Gordon-2002 dataset with various parameter values. (a) The
average runtime (in seconds) of the AFG-k-means algorithmwith k¼2, T¼3, and default values for other parameters. (b) The average runtime (in seconds) of the FG-k-means
algorithm with random feature groups as input.
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Fig. 11. The color maps of the data dispersions by cluster and attribute. (a) Alizadeh-2000-v2 with attributes in their original order. (b) Alizadeh-2000-v2 with attributes
grouped by AFG-k-means. (c) Gordon-2002 with attributes in their original order. (d) Gordon-2002 with attributes grouped by AFG-k-means. All the four color maps are
based on results produced by AFG-k-means with T¼3, β¼729, ϵ1 ¼ 27, and ϵ2 ¼ 0:0001. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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FG-k-means algorithm does. In addition, the AFG-k-means algo-
rithm is less sensitive to the parameters than the Fg-k-means
algorithm is.

The average runtime of the AFG-k-means algorithm and the
FG-k-means algorithm on the Alizadeh-2000-v2 dataset is shown
in Fig. 8. From the figure we see that the AFG-k-means algorithm
converged much slower than the FG-k-means algorithm did. The
reason is the Alizadeh-2000-v2 dataset has 2093 features and only
62 records and it took time for the AFG-k-means algorithm to
group the large number of features. For the FG-k-means algorithm,
the features were randomly divided into 3 groups and the feature
groups were the same during iterations. As a result, the FG-k-
means algorithm runs much faster for small-sample, high-
dimensional data.

For the Gordon-2002 dataset, the average accuracy of the two
algorithms is shown in Fig. 9. From the figure we see that the AFG-k-
means algorithm also outperformed the FG-k-means algorithm. The
AFG-k-means algorithm produced more accurate results with large
values of ϵ1. Larger value of ϵ1 lead to more uniform individual feature
weights. For small λ, the FG-k-means algorithm produced much less
accurate results. For this dataset, the FG-k-means algorithm is
sensitive to both λ and η. Fig. 10 shows the average runtime of the
two algorithms on the Gordon-2002 dataset. Since this dataset has
1626 attributes, the AFG-k-means algorithm also converged slower
than the FG-k-means algorithm did.

Fig. 11 shows the color maps produced from the dispersions of
the two real datasets. We calculate the dispersion of each attribute
within each cluster and visualize these dispersions based on the
original attribute order and the attribute groups. From the figures
we can see that the AFG-k-means algorithm is able to cluster data
and group features simultaneously.

The numerical results on real datasets show that the AFG-k-
means algorithm outperforms the FG-k-means algorithm in terms
of accuracy. However, the AFG-k-means algorithm converges
slower than the FG-k-means algorithm because the real datasets
have a large number of features and only a few records. Since the
AFG-k-means algorithm groups both records as well as features
during the iterative process, the runtime is dominated by the
feature grouping where the number of features is much larger
than the number of records.

4.3. Comparison with other algorithms

In this subsection, we compare AFG-k-means with FG-k-means,
W-k-means, FSC, EWKM, and LAC using eight datasets summar-
ized in Table 4. Since W-k-means and FSC are similar except for the
regularization term, we only include FSC in our comparison. We
already tested AFG-k-means and FG-k-means on the first four
datasets with various parameter values.

Some parameter values of the five algorithm are given in
Table 5. Except for the desired number of clusters k, which was
set to the true number of clusters of a dataset, other parameters of
an algorithm were the same for all datasets. We selected these
parameter values based on the experiments we conducted in the
previous two subsections. Since LAC, EWKM, and FG-k-means use
exponentially normalized weights, we used relatively large values
for their parameters in order to prevent one attribute or one
feature group dominates the weights. For the FG-k-means algo-
rithm, attributes were divided into three groups randomly for each
run. We also normalized all datasets so that each attribute has a
standard deviation of 1.

The average accuracy and runtime of the five algorithms on the
eight datasets are summarized in Table 6, from which we see that the
AFG-k-means algorithm produced the most accurate results in most
cases. As expected, for small-sample and high-dimensional datasets (e.
g., R1, R2, and R3), the AFG-k-means algorithm converged slower than
other algorithms did.

5. Concluding remarks

In this paper, we proposed a subspace clustering algorithm
with automatic feature grouping, called the AFG-k-means algo-
rithm, based on the feature grouping idea of the FG-k-means
algorithm proposed by [25]. In the FG-k-means algorithm, the
feature groups are given as input. In our algorithm, the feature
groups are automatically determined during the iterative process
of the algorithm. The automatic feature grouping is achieved by
introducing an additional component to the objective function of
the FSC algorithm [12] and dynamically updating the feature
groups during the iteration.

Table 4
Eight datasets. The n;d; k refer to the number of data points, the number of
attributes, and the number of clusters, respectively.

Dataset n d k Reference

S1 5000 200 3 The first synthetic data
S2 5000 200 3 The second synthetic data
R1 62 2093 3 Alizadeh-2000-v2 [3]
R2 181 1626 2 Gordon-2002 [3]
D2 6000 200 3 D2 [25]
MF 2000 649 10 Multiple features [25]
R3 72 1081 2 Armstrong-2002-v1 [3]
R4 104 182 2 Chowdary-2006 [3]

Table 5
Some parameter values of the five clustering algo-
rithms used in the comparison.

Algorithm Parameters

FSC α¼2, ϵ¼0.0001
LAC h¼729
EWKM γ¼729
FG-k-means T¼3, λ¼729, η¼729
AFG-k-

means
T¼3, β¼1, ϵ1 ¼ 0:0001,
ϵ2 ¼ 0:0001

Table 6
Summary of clustering results on eight datasets by five algorithms. The accuracy is
measured by the corrected Rand index and the runtime is measured in seconds.
Numbers outside parenthesis are the mean values of 100 runs. Numbers in
parenthesis are the standard deviations of 100 runs. Bold numbers indicate the
best results.

Data FSC LAC EWKM FG-k-means AFG-k-means

Accuracy
S1 0.67 (0.3) 0.86 (0.23) 0.75 (0.26) 0.88 (0.21) 0.89 (0.23)
S2 0.75 (0.3) 0.84 (0.23) 0.73 (0.25) 0.89 (0.19) 0.9 (0.22)
R1 0.5 (0.27) 0.59 (0.19) 0.59 (0.2) 0.56 (0.19) 0.54 (0.22)
R2 0.5 (0.42) 0.57 (0.48) 0.53 (0.46) 0.54 (0.46) 0.69 (0.39)
D2 0.8 (0.25) 0.44 (0.09) 0.59 (0.09) 0.5 (0.01) 0.75 (0.25)
MF 0.13 (0.05) 0.68 (0.07) 0.67 (0.07) 0.57 (0.06) 0.14 (0.05)
R3 0.18 (0.23) 0.32 (0.28) 0.32 (0.28) 0.28 (0.25) 0.33 (0.32)
R4 0.54 (0.32) 0.06 (0.02) 0.06 (0.02) 0.06 (0.02) 0.76 (0.24)

Runtime
S1 3.55 (4.86) 2.1 (2.85) 1.06 (0.59) 1.19 (1) 1.89 (2.54)
S2 2.96 (4.68) 2.47 (3.34) 1.03 (0.66) 1.12 (0.83) 1.71 (2.27)
R1 0.13 (0.07) 0.09 (0.03) 0.1 (0.03) 0.1 (0.04) 4.3 (1.95)
R2 0.31 (0.15) 0.27 (0.18) 0.31 (0.18) 0.3 (0.23) 2.31 (0.9)
D2 5.48 (5.28) 7.86 (2.99) 1.32 (0.19) 5.58 (0.6) 5.87 (4.87)
MF 2.72 (0.51) 8.65 (2.79) 8.83 (2.74) 12.73 (4.27) 12.7 (4.82)
R3 0.07 (0.02) 0.06 (0.02) 0.07 (0.03) 0.06 (0.03) 1.28 (0.74)
R4 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.04 (0.02)
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The experiments on both synthetic data and real data have
shown that the AFG-k-means algorithm outperformed the FG-k-
means algorithm in terms of accuracy and choice of parameters.
The experiments on synthetic data have shown that the AFG-k-
means algorithm is able to recover the clusters embedded in
feature groups as well as the feature groups. The experiments on
real gene expression data have shown that the AFG-k-means
algorithm produces more accurate clustering results than the FG-
k-means algorithm. In addition, the experiments show that the
AFG-k-means algorithm is less sensitive to parameters than the
FG-k-means algorithm is.

One drawback of the AFG-k-means algorithm is that the
clustering results depend on initial cluster centers. This drawback
is common to k-mean type algorithms including the FG-k-means
algorithm. Another limitation of the AFG-k-means algorithm is
that its objective function is restricted to the form of sum of
squares. For example, if we use wα

lj or wlj logwlj in the objective
function, then we have no closed-form formulas to update the
weights.

It is also worth to point out that FG-k-means and AFG-k-means
are related to multi-view clustering [26,27]. The feature groups are
similar to the views in multi-view clustering. In FG-k-means and
multi-view clustering, the feature groups and views are known
beforehand. In the proposed AFG-k-means algorithm, the feature
groups or views are not known and recovering these feature
groups and views is part of the clustering task.
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