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a b s t r a c t

The valuation of variable annuity guarantees has been studied extensively in the past four decades. How-
ever, almost all the studies focus on the valuation of guarantees embedded in a single variable annuity
contract. How to efficiently price the guarantees for a large portfolio of variable annuity contracts has not
received enough attention. This paper fills the gap by introducing a novelmethod based on data clustering
and machine learning to price the guarantees for a large portfolio of variable annuity contracts. Our test
results show that this method performs very well in terms of accuracy and speed.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Variable annuity (VA), also known as segregated fund, guaran-
teed investment fund, unit-linked life insurance, or equity-linked
life insurance (Armstrong, 2001), is a very popular insurance prod-
uct. In a VA contract, the policyholder’s premiums are invested in
the assets of a fund. The benefit of the contract at maturity is equal
to the market value of the accumulated premiums. The invest-
ments of the fund may consist of bonds and/or equities.

The VA contract comes with guarantees. For example, almost
every VA contract contains the guaranteed minimum death ben-
efit (GMDB). Other common guarantees include the guaranteed
minimum withdrawal benefit (GMWB), the guaranteed minimum
maturity benefit (GMAB), and the guaranteed minimum income
benefit (GMIB). All these guarantees are financial guarantees,
which cannot be adequately addressed by traditional actuarial ap-
proaches (Boyle and Hardy, 1997; Hardy, 2000). Stochastic simula-
tion (i.e., the Monte Carlo method) and option pricing are the two
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approaches that have been used to value VA contracts (Boyle and
Hardy, 1997).

In the stochastic simulation approach, a stochastic model (i.e.,
Black–Scholes model) is used to simulate the future performance
of the fund and generate a sample of the accumulated premiums
of a VA contract at maturity. The mean of the discounted sample is
the fair market value of the VA contract. In the option pricing ap-
proach, a dynamic investment strategy is used to adjust the assets
of the portfolio on an ongoing basis so that the guarantee is met at
maturity. In practice, the Monte Carlo method is used to value VA
contracts since there are no closed-form formulas to value the VA
contract.

The financial risk under the guarantees is non-diversifiable
(Hardy, 2000). When the investment performance is poor, many
maturing contractsmay require additional funds to cover the guar-
antee at the same time. In fact, the claim can be quite significant
in such case. Boyle and Hardy (1997) presented three methods to
manage the financial risk associated with VA contracts.

The first method is actuarial reserving. In this method, an
amount ofmoney is held in risk free bonds until the policymatures.
The amount of money is calculated to be sufficient to meet the
guarantee with a given probability. The secondmethod is dynamic
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hedging. In this method, the guarantee is treated like a put option.
To hedge the put option, a hedge portfolio of financial instruments
(e.g., futures and swaps) is purchased and activelymanaged in such
a way that any shortfalls from the guarantee will be financed by
the hedge portfolio under all possible financial market situations.
The third method is static hedging. In this method, put options are
bought to hedge the guarantee cost and the problem of dynamic
hedging is passed to a third party.

The secondmethod, dynamic hedging, is a popular riskmanage-
ment approach for VA contracts and is adopted bymany insurance
companies. However, this method requires determining the sen-
sitivities of the option value to risk factors. These sensitivities are
called ‘‘Greeks’’. Delta and Rho are two commonly used Greeks for
dynamic hedging.

Since theMonte Carlomethod is used to price the value of guar-
antees in practice, onemajor challenge ofmaking dynamic variable
annuity hedging work is to calculate the sensitivities of the option
value (i.e., the value of the guarantee) for a large portfolio of VA
contracts within a limited time interval. In order to complete the
calculation in time, insurance companies employ many comput-
ing servers to conduct the calculation in parallel. In other words,
insurance companies approach the computing problem from the
perspective of hardware.

In this paper, we introduce a novel method based on data clus-
tering andmachine learning to calculate the sensitivities of the op-
tion value for a large portfolio of VA contracts. This method does
not require using the Monte Carlo method to calculate the sensi-
tivities for every VA contract in the large portfolio. As a result, this
method is able to reduce the computing time significantly. Since
the proposed method does not depend on any specific features of
variable annuities, it can be used to value portfolios of other prod-
ucts such as exotic options.

The remaining of the paper is structured as follows. Section 2
gives a brief review of the academic papers relevant to variable
annuity pricing and hedging. Section 3 gives a brief description of
a clustering algorithm used to cluster mixed-type data. Section 4
presents a machine learning technique. Section 5 presents some
test results of the clustering method and the machine learning
method. Section 6 concludes the paper and gives a survey of future
work.

2. Literature review

The academic literature on valuing and hedging guarantees
in VA contracts is extensive. Since the seminal work on option
pricing (Black and Scholes, 1973), many papers on variable annuity
pricing and hedging have been published. In this section, we
present a brief review of the relevant papers published in the past
four decades.

Brennan and Schwartz (1976) introduced the Brennan–Schwa-
rtz model to study the equilibrium pricing of equity-linked life
insurance policies with an asset value guarantee by decompos-
ing the benefit into a sure amount and an immediately exercis-
able call option on the reference portfolio, where the call option
is priced by the option pricing model of Black–Scholes (Black and
Scholes, 1973). Boyle and Schwartz (1977) presented a theoret-
ical framework for valuing death benefit guarantees and matu-
rity benefit guarantees under equity-linked contracts. Bacinello
and Ortu (1993) extended the Brennan–Schwartz model to the
case when minimum guarantees that are functions of the premi-
ums paid. Nielsen and Sandmann (1995) introduced a model with
stochastic interest rates to price equity-linked life insurance con-
tracts with periodic premiums. Ekern and Persson (1996) studied
the valuation of complex unit-linked insurance contracts by de-
composing the benefit pattern into simple components of increas-
ing complexity and pricing these components separately.

Armstrong (2001) studied the guarantee reset feature in seg-
regated funds using a discrete time Markov chain model and ana-
lyzed the optimal strategy of resetting the guarantee. Boyle et al.
(2001) presented a Monte Carlo simulation method to value the
reset options embedded in some segregated funds. Windcliff et al.
(2001) studied the valuation of VA contracts with reset features
using a method based on the numerical solution of a set of linear
complementarity problems. Windcliff et al. (2002) studied the ef-
fects of volatility, interest rates, and product design on the cost of
providing a guarantee and the implication of the finding on the re-
set feature. Kijima andWong (2007) studied the pricing of Ratchet
equity-linked annuities in the presence of stochastic interest rates.

Milevsky and Promislow (2001) studied the options to annu-
ities that are embedded in VA contracts under both the discrete
and continuous-time pricing frameworks. Charupat and Milevsky
(2002) studied the optimal asset allocation problem in variable an-
nuities and derived the optimal utility-maximizing asset alloca-
tion between a risky and risk-free asset within a VA contract. Lee
(2003) derived explicit pricing formulas for equity-linked annu-
ities with path-dependent options using the method of Esscher
transforms. Young (2003) used the principle of equivalent utility
to study the valuation of equity-linked life insurance contracts.

Bacinello (2003a,b) studied variable annuities with surren-
der options using a binomial option pricing model. Bacinello
(2005) presented an endogenous model to price equity-linked
life insurance policies embedding surrender options. Cheung and
Yang (2005) studied the optimal surrender strategy for holders
of equity-linked investment products embedding surrender op-
tions. Gaillardetz and Lin (2006) used binomial models to value
equity-linked insurance contracts. Costabile et al. (2008) also used
binomialmodels to value equity-linked policieswith surrender op-
tions. Bacinello et al. (2009) proposed a least squares Monte Carlo
method to price life insurance contracts embedding surrender op-
tions. Costabile et al. (2009) proposed a bivariate model to price
equity-linked policies with surrender options and maturity guar-
antees. Qian et al. (2010) studied the valuation of equity-indexed
annuities under stochastic mortality and interest rate environ-
ment. Li and Szimayer (2011) proposed amethod to determine the
price bounds of unit-linked life insurance contracts by analyzing
the upper and lower bounds of the mortality intensity.

Gerber and Shiu (2003) derived closed-form formulas for pric-
ing complex guarantees embedded in some equity-linked an-
nuities by studying European lookback options. Jacques (2003)
studied the valuation of a single equity-linked contract with-
out mortality diversification and analyzed a variety of situations
depending on the guarantee, the volatility, and the age of the pol-
icyholder. Lin et al. (2009) studied the pricing problem of equity-
linked annuities and variable annuities under a regime-switching
model and used the Esscher transform to obtain an equivalentmar-
tingale measure for valuation in incomplete markets.

Milevsky and Posner (2001) used risk-neutral option pricing
theory to value the GMDB in VA contracts. Bélanger et al. (2009)
proposed a method for pricing the GMDB rider embedded in
some VA contracts that allow for partial withdrawals, where the
GMDB pricing problem was modeled as an impulse control prob-
lem. Wang (2009) studied quantile hedging for the GMDB rider
presented in VA contracts. Gerber et al. (2012) proposed a method
to price the GMDB rider by calculating the expected discounted
value of a payment at time of death.

Milevsky and Salisbury (2006) developed a variety of methods
to study the cost and value of the GMWB embedding in many VA
contracts. Chen and Forsyth (2008) presented an impulse stochas-
tic control formulation for pricing the GMWB. Dai et al. (2008) de-
veloped a singular stochastic control model to value VA contract
with the GMWB rider. Xu and Wang (2009) proposed a model
based on a two-dimensional partial differential equation to price
the GMWB rider. Peng et al. (2010) studied the valuation of the
GMWB rider under the Vasicek stochastic interest rate framework
and derived analytic approximation solutions to the fair value of
the GMWB rider. Gao and Ulm (2012) studied the valuation of
the GMDB rider using a utility-based approach. Kolkiewicz and Liu
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(2012) proposed amethod to hedge the GMWB rider by finding the
closest path-independent option to the guarantee and constructing
a portfolio of traded European options that approximates the op-
timal option. Yang and Dai (2013) proposed a tree model to price
the GMWB rider embedded in deferred life annuity contracts.

Jiang and Chang (2010) proposed an analytical solution of the
cost of the GMAB rider by applying the Black–Scholes model. Ko
et al. (2010) studied the valuation of maturity guarantee with
dynamic withdrawal benefit under the Black–Scholes frame-
work.Marshall et al. (2010) studied the valuation of the GMIB rider
in a complete market by decomposing the GMIB value and ana-
lyzed the sensitivity of the GMIB value to the financial variables.

Bauer et al. (2008) proposed a general framework to price a va-
riety of guarantees in a consistent manner. Consiglio and Giovanni
(2008) developed a stochastic programming model to value the
minimum guarantee in some life insurance products under the as-
sumption that the markets are incomplete. Bacinello et al. (2011)
proposed a unifying framework to price various types of guaran-
tees. Ng and Li (2011) used amultivariate extension of the regime-
switching conditional Esscher transform to study the valuation of
VA guarantees written on multiple funds. Ng and Li (2013) pro-
posed a multivariate framework for pricing VA guarantees written
onmultiple assets and demonstrated how dynamic hedging can be
implemented in such a multivariate framework.

In all the papersmentioned above, emphasis is put on the valua-
tion of a single VA contract. How toprice efficiently a large portfolio
that contains hundreds of thousands of VA contracts is not studied.
This paper aims to fill this gap by proposing an efficientmethod for
pricing a large portfolio of VA contracts.

3. A data clustering method

Data clustering (Gan et al., 2007) refers to the process of divid-
ing a set of items into groups or clusters such that items in the same
cluster are similar to each other and items in different clusters are
distinct. The k-prototypes algorithm (Huang, 1998) is a clustering
algorithm that is suitable to cluster mixed-type data. In this sec-
tion, we give a brief description of the k-prototypes algorithm.

Let X = {x1, x2, . . . , xn} denote the portfolio of VA contracts,
where n is the number of VA contracts and xi represents the ith VA
contract. Without loss of generality, we assume that a VA contract
is characterized by d attributes (e.g., gender, age, account value,
etc.) and that the first d1 attributes are numeric and the last d2 =

d − d1 attributes are categorical. Then the distance between two
records x and y in X can be defined as (Huang, 1998)

D(x, y, λ) =

 d1
h=1

(xh − yh)2 + λ

d
h=d1+1

δ(xh, yh), (1)

where xh and yh are the hth component of x and y, respectively, λ
is a balance weight used to avoid favoring either type of attribute,
and δ(·, ·) is the simple matching distance defined as

δ(xh, yh) =


0, if xh = yh,
1, if xh ≠ yh.

Note that the numerical values in the above distance definition
are normalized so that for each h = 1, 2, . . . , d1, the standard
deviation of x1h, x2h, . . . , xnh is one, where xih is the hth component
of the ith VA contract xi.

The objective function that the k-prototypes algorithm tries to
minimize is defined as

Pλ =

k
j=1


x∈Cj

D2(x, µj, λ), (2)

where D(·, ·, λ) is defined in Eq. (1), k is the number of clusters, Cj
is the jth cluster, and µj is the center or prototype of cluster Cj.
The k-prototypes algorithm works iteratively in order to find a
solution thatminimizes the objective function defined in Eq. (2). In
otherwords, the k-prototypes algorithm repeats updating the clus-
termemberships given the cluster centers and updating the cluster
centers given the cluster memberships until some stop condition
is satisfied.

Mathematically, the k-prototypes algorithm can be described as
follows.

1. Initialize cluster center. At this step, the algorithm initializes the
k cluster centers by selecting k distinct records from the dataset
X randomly. Suppose µ

(0)
1 , µ

(0)
2 , . . ., µ(0)

k are the k initial cluster
centers.

2. Update cluster memberships. At this step, the algorithm updates
the cluster memberships γ1, γ2, . . . , γn as follows:

γ
(0)
i = argmin

1≤j≤k
D(xi, µ

(0)
j , λ), (3)

where D(·, ·, λ) is defined in Eq. (1).
3. Update cluster centers. At this step, the algorithm updates the

cluster centers as follows:

µ
(1)
jh =

1
|Cj|


x∈Cj

xh, h = 1, 2, . . . , d1, (4a)

µ
(1)
jh = modeh(Cj), h = d1 + 1, . . . , d, (4b)

where Cj =


xi ∈ X : γ

(0)
i = j


for j = 1, 2, . . . , k, and modeh

(Cj) is themost frequent categorical value of the hth attribute in
cluster Cj. Let Ah1, Ah2, . . . , Ah,mh be the distinct values the hth
attribute can take,wheremh is the number of distinct values the
hth attribute can take. Let fht(Cj) be the number of records in
cluster Cj, whose hth attribute takes value Aht for t = 1, 2, . . . ,
mh. That is,

fht(Cj) = |{x ∈ Cj : xh = Aht}|, t = 1, 2, . . . ,mh.

Then

modeh(Cj) = argmax
1≤t≤mh

fht(Cj), h = d1 + 1, . . . , d.

4. Repeat Step 2 and Step 3 until the cluster memberships do not
change between two iterations or the maximum number of it-
erations is reached.

Suppose that the cluster centers obtained from the k-prototypes
algorithm are denoted by µ1, µ2, . . . , µk. Then we select the
representative VA contracts z1, z2, . . . , zk as follows:

zj = argmin
x∈X

D(x, µj, λ).

That is, the representative VA contract zj is the VA contract in X
that is closest to the cluster center µj. We assume that these k
representative VA contracts are mutually distinct, that is,

D(zr , zs, λ) > 0

for all 1 ≤ r < s ≤ k.
If n and k are large (e.g., n > 10000 and k > 20), the k-proto-

types algorithm will be very slow as it needs to perform many
distance calculations. In such cases, we divide the portfolio of VA
contracts into many subsets and find a few clusters from each sub-
set. For example, if we want to cluster a portfolio of 200,000 VA
contracts into 100 clusters, we first divide the portfolio into about
33 subsets and cluster each subset into 3 or 4 clusters. In this
way, the clustering algorithm is very fast to find 100 representa-
tive contracts. If the portfolio is large and the policies are evenly
distributed, this approach produces similar clustering results as
the direct k-prototypes algorithm does. However, if the portfolio is
small, this approach will produce different clustering results. For
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example, if we want to cluster the 9 points given in Fig. 1 into 3
clusters, the direct k-prototypes algorithm gives us {1, 2, 3}, {4, 5,
6}, and {7, 8, 9}. If we divide the 9 points into {1, 2, 3, 4, 5} and
{6, 7, 8, 9}, and find 2 clusters from {1, 2, 3, 4, 5} and 1 cluster
from {6, 7, 8, 9}, then the approach gives us {1, 2, 3}, {4, 5}, and
{6, 7, 8, 9}.

4. A machine learning method

Machine learning (Mitchell, 1997) refers to the process of
constructing and studying systems that can learn from data. The
Krigingmethod (Isaaks and Srivastava, 1990) is amachine learning
method and is known as the Gaussian process predictor in the
machine learning domain (Rasmussen andWilliams, 2005). In this
section, we present a brief description of the ordinary Kriging
method (Isaaks and Srivastava, 1990).

Let z1, z2, . . . , zk be the representative VA contracts obtained
from the clustering algorithm. For every j = 1, 2, . . . , k, let yj be
the fair value of zj that is calculated by the Monte Carlo method.
Then we use the Kriging method to estimate the fair value of the
VA contract xi as

ŷi =

k
j=1

wij · yj, (5)

where wi1, wi2, . . . , wik are the Kriging weights.
The Kriging weights wi1, wi2, . . . , wik are obtained by solving

the following linear equation system:
V11 · · · V1k 1
...

. . .
...

...
Vk1 · · · Vkk 1
1 · · · 1 0

 ·


wi1
...

wik
θi

 =


Di1
...

Dik
1

 , (6)

where θi is a control variable used to make sure the sum of the
Kriging weights is equal to one,

Vrs = α + exp


−
3
β
D(zr , zs, λ)


, r, s = 1, 2, . . . , k,

and

Dij = α + exp


−
3
β
D(xi, zj, λ)


, j = 1, 2, . . . , k.

Here the distance function D(·, ·, λ) is defined in Eq. (1), and α ≥ 0
and β > 0 are two parameters. Since D(zr , zs, λ) > 0 for all 1 ≤

r < s ≤ k, the above linear equation system has a unique solu-
tion (Isaaks and Srivastava, 1990).

The fair value of the portfolio X is equal to the sum of the fair
values of all VA contracts in X , i.e.,

Ŷ =

n
i=1

ŷi =

n
i=1

k
j=1

wij · yj =

k
j=1

wj · yj, (7)

where

wj =

n
i=1

wij.

If we are interested in only the fair value Ŷ of the portfolio, we
can calculate Ŷ in an efficient way by obtaining w1, w2, . . . , wk
from the following linear equation system:

V11 · · · V1k 1
...

. . .
...

...
Vk1 · · · Vkk 1
1 · · · 1 0

 ·


w1
...

wk
θ

 =


D1
...
Dk
n

 , (8)
Fig. 1. An example of 9 points.

Table 1
Variable annuity contract specification. Here N and R denote the set of natural
number and the set of real numbers, respectively.

Attribute Values

Guarantee type GMDB only, GMDB + GMWB
Gender Male, Female
Age N ∩ [20, 60]
Premium R ∩ [10000, 500000]
GMWB withdrawal rate 0.04, 0.05, 0.06, 0.07, 0.08
Maturity N ∩ [10, 25]

where

Dj =

n
i=1

Dij, j = 1, 2, . . . , k.

In fact, Eq. (8) is obtained by summing both sides of Eq. (6) from
i = 1 to n. In this way, we only need to solve one linear equation
system.

5. Application in VA valuation

In this section, we present some test results of this method
based on synthetic data. We first introduce how we generate a
large portfolio of synthetic VA contracts. Then we introduce the
Monte Carlo valuation of these VA contracts. Finallywe present the
performance of the clustering method and the machine learning
method in terms of accuracy and speed.

5.1. Synthetic VA contracts

We generate a portfolio of 200,000 VA contracts, which are
specified in Table 1. We consider only two types of guarantees:
GMDB and GMWB. Since VA is a type of life insurance, every con-
tract has theGMDB rider. The VA contracts are randomly generated
by selecting values uniformly from the ranges specified in Table 1.

5.2. Monte Carlo valuation

To price the value of guarantees embedded in the VA contracts,
we follow theMonte Carlomethod proposed by Bauer et al. (2008).
To describe the Monte Carlo method for pricing the GMDB rider
and the GMWB rider, we used the mathematical symbols given in
Table 2.

Since we consider only the GMDB rider and GMWB rider, there
are two possible types of events (Bauer et al., 2008):

• the policyholderwithdrawsmoney as a guaranteedwithdrawal
of the GMWB rider;

• the policyholder dies.
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Table 2
Mathematical symbols for the Monte Carlo method.

Symbol Meaning

St The underlying mutual fund at time t of the variable annuity

At The account value at time t

Wt The withdrawal benefit at time t

Dt The death benefit at time t

GW
t The remaining total amount that can be withdrawn after time t

GE
t The maximum amount that can be withdrawn annually

GD
t The guaranteed minimum death benefit at time t

xW The proportion of the premium that can be withdrawn annually

T The maturity of the contract

We use (·)−t and (·)+t to denote the value of a state variable
(e.g., At ) immediately before and after the occurrence of such
events, respectively.

In ourMonte Carlo valuation of the VA contracts, we assume the
following:

• the underlying mutual fund is simulated as

S0 = 1, St = St−1 exp


r −
1
2
σ 2


+ σZ


for t = 1, 2, . . . , 40, where r is the interest rate, σ is the volatil-
ity of the underlying mutual fund, and Z is a standard normal
random variable. In our tests, we use r = 3% and σ = 20% and
simulate 1000 paths;

• for a contractwith theGMWBrider, the policyholder takesmax-
imum annual withdrawals;

• all the events happen only at anniversary date;
• there are no fees;
• there are no lapses;
• the mortality follows the 1996 IAM mortality tables provided

by the Society of Actuaries.

At time t = 0, we have

GW
0 = A0, GE

0 = xWA0, GD
0 = A0.

For t = 0, 1, . . . , T − 1, the evolution of the state variables
between t+ and (t +1)− is described as follows. The account value
evolves as

A−

t+1 = A+

t
St+1

St
.

The guaranteed minimum death benefit, the maximum amount
that can be withdrawn annually, and the remaining total amount
that can be withdrawn do not change, i.e.,

GD−

t+1 = GD+

t , GE−

t+1 = GE+

t , GW−

t+1 = GW+

t .

The evolution of the state variables between (t + 1)− and
(t + 1)+ is described as follows. The death benefit at time t + 1
is calculated as

Dt+1 = max

0,GD−

t+1 − A−

t+1


.

Since we assume that the policyholder takes maximally available
withdrawal annually, the withdrawal amount at year t +1 is given
by

E = min

GE−

t+1,G
W−

t+1


,

and the maximum amount that can be withdrawn annually does
not change, i.e., GE+

t+1 = GE−

t+1. The withdrawal benefit at time t + 1
is given by

Wt+1 = max

0, E − A−

t+1


.

The account value becomes

A+

t+1 = max

0, A−

t+1 − E

.

Table 3
Results of the Monte Carlo valuation. Numbers in brackets are negative numbers.

Measurement Value

Market value 3,003,947,180
Dollar Delta (8,150,275,955)
Dollar Rho (9,736,358)
Time used (seconds) 1942.22

The remaining total amount that can bewithdrawn after time t+1
becomes

GW+

t+1 = max

0,GW−

t+1 − E

.

The guaranteed minimum death benefit will be adjusted pro rata
as follows:

GD+

t+1 =
A+

t+1

A−

t+1
GD−

t+1.

Then the present value of the GMDB and the GMWB benefits is
given by

V (S1, S2, . . . , S40) =

T+1
t=1

t−1px0(1 − qx0+t−1)Wte−rt

+

T+1
t=1

t−1px0qx0+t−1Dte−rt , (9)

where x0 is the age of the policyholder. The value of theGMDB rider
and the GMWB rider is the average of V (S1, S2, . . . , S40) along all
paths. If a contract does not have the GMWB rider, the above for-
mula still applies by letting the withdrawal rate to be zero.

5.3. Test results

To measure the performance of the clustering method and the
machine learning method, we first use the Monte Carlo method
described above to calculate the market value, dollar Delta, and
dollar Rho of the guarantees of 200,000 VA contracts and record
the time elapsed. These numbers and the time elapsed will be our
benchmarks used to measure the accuracy and speed of the new
method, respectively.

The benchmark results from theMonte Carlomethod are shown
in Table 3. The market value, dollar Delta, and dollar Rho are the
aggregate numbers for thewhole portfolio of 200,000VA contracts.
That is, we used the Monte Carlo method to calculate the market
value, dollar Delta, and dollar Rho of each individual contract and
added them up to get the numbers in the portfolio level. From the
table we see that it takes the Monte Carlo method 1942.22 s (or
32 min 22.22 s) to price all the contracts.

To test the clustering and machine learning methods, we first
use the k-prototypes algorithm to select a small set of representa-
tive policies. Then we use the Monte Carlo method to calculate the
market value, dollar Delta, and dollar Rho of each representative
policy. Finally, we use the Kriging method to estimate the market
value, dollar Delta, and dollar Rho of each policy in the portfolio.
In the clustering step and the Kriging step, we use the z-score
method to normalize the numerical attributes (e.g., age, premium,
etc.) so that the distance is not dominated by a single attribute. In
theMonte Carlo step, however, we still use the original data as nor-
malized data do not make sense in this step.

We conducted four tests for the clustering and machine learn-
ing methods and used different numbers of clusters in different
tests. In particular, we tested 100 clusters, 500 clusters, 1000 clus-
ters, and 2000 clusters. The values of other parameters used in the
tests are shown in Table 4. The results of these tests are shown in
Table 5. From the table we see that the numbers calculated by the
clustering and machine learning methods approximate very well
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Table 4
Values of the parameters used in the tests. Since the numerical attributes are
normalized by the z-score method, we set λ = 1 so that categorical attributes and
numerical attributes are balanced in the distance calculation. The values of α and β

are selected according to Isaaks and Srivastava (1990).

Parameter Value

k 100, 500, 1000, 2000
λ 1
α 0
β 95th percentile of the distances D(zr , zs, 1), 1 ≤ r < s ≤ k

the benchmark numbers given in Table 3. In addition, the accuracy
improves when the number of clusters increases. As we can see
from Table 5, the percentage differences of themarket value, dollar
Delta, and dollar Rho are around 1% when 2000 clusters are used.

From Table 5, we see that the clustering and machine learning
methods always overestimate the market value, dollar Delta, and
dollar Rho. Such bias is caused by the fact that the set of represen-
tative polices does not contain boundary policies and the fact that
the Kriging method does not perform well for extrapolation.

In Table 6, we present the time used by the clustering and ma-
chine learning methods. In this new method, we first cluster the
portfolio of VA contracts to find a set of representative contracts.
Thenwe use theMonte Carlomethod to calculate themarket value
and Greeks of the representative contracts. Finally we use the ma-
chine learningmethod to calculate themarket value andGreeks for
all the contracts in the portfolio. Hence we present the time used
by each step of the new method.

From Table 6 we see that the time used in the clustering step
decreases as the number of clusters increases. This is consistent
with the way of clustering the VA contracts (see Section 3). The
time used by both theMonte Carlomethod and the Krigingmethod
increases as the number of clusters increases. The total time used
by the method increases as the number of cluster increases. While
it takes the Monte Carlo method 1942.22 s to calculate the market
value, dollar Delta, and dollar Rho for the whole portfolio, it takes
the new method (with 2000 clusters) about 135.02 s to calculate
those quantities. The new method is 14 times faster than the
original Monte Carlo method.

In our test, we used four different values of k (the number of
clusters) to show the performance of the new method. Usually, if
more numbers of clusters are used, the results will be closer to
the benchmarks. In the extreme case, if all policies in the portfo-
lio are used as representative policies, the results will be identical
to the benchmarks (Isaaks and Srivastava, 1990). However, a large
number of representative policies would make solving the linear
equation system in Eq. (8) impractical because solving a large linear
equation system requires lots of computer memory and time. For
example, a 5000 × 5000 matrix of double precision floating-point
numbers uses 191 megabytes of memory. In practice, the number
Table 6
Time used by the clustering method and the machine learning method. The
numbers are in seconds.

Number of clusters
100 500 1000 2000

k-prototypes 20.41 12.86 10.22 8.37
Monte Carlo 1.63 5.38 9.52 19.79
Kriging 5.83 26.8 52.69 106.86

Total 27.87 45.04 72.43 135.02

of clusters is selected in a way that accuracy and speed are bal-
anced.

6. Concluding remarks

In this paper we proposed a novel method to calculate the
market value and Greeks of the variable annuity guarantees for a
large portfolio of variable annuity contracts. The method involves
three steps:

1. cluster the large portfolio of VA contracts to get a small set of
representative contracts;

2. use the Monte Carlo method to calculate the market value and
Greeks of every representative contract;

3. use the machine learning method to calculate the market value
and Greeks of every contract in the portfolio.

Since the number of representative contracts is small and the
clustering method and machine learning method are fast, the new
method can reduce the computing time significantly. Our tests on
synthetic VA data show that the new method performs very well
in terms of accuracy and speed.

The new method treats the valuation system (e.g., the Monte
Carlo method) as a black box and learns the valuation system
through inputs (e.g., the representative VA contracts) and outputs
(e.g., the market value and Greeks). Since the synthetic VA con-
tracts in our method are very simple and we used annual time
steps, the Monte Carlo method is fast and can complete pricing
200,000 VA contracts in 1942.22 s. Even in this case, the new
method (with 2000 clusters) is 14 times faster than the Monte
Carlo method.

In cases when the valuation system is more time consuming,
the new method will achieve even better performance in terms
of speed because the clustering method and the machine learning
method are independent of the performance of the valuation
system. For example, if the Monte Carlo simulation model is based
on a monthly time step basis, then the computing time would be
approximately 12 times slow. In such case, it would take theMonte
Carlo method 1942.22 × 12 = 23306.64 s or 6.47 h to price the
200,000 VA contracts. The time used by the clustering andmachine
Table 5
Results of the clustering and machine learning methods. The dollar difference and percentage difference are calculated against the
benchmark numbers obtained from the Monte Carlo method.

Cluster Measurement Value Difference ($) Difference (%)

100
Market value 3,304,156,326 300,209,146 9.99%
Dollar Delta (8,924,741,716) (774,465,760) 9.50%
Dollar Rho (10,843,115) (1,106,757) 11.37%

500
Market value 3,153,864,868 149,917,688 4.99%
Dollar Delta (8,584,797,784) (434,521,829) 5.33%
Dollar Rho (10,304,245) (567,887) 5.83%

1000
Market value 3,090,778,168 86,830,989 2.89%
Dollar Delta (8,438,870,353) (288,594,398) 3.54%
Dollar Rho (10,043,320) (306,961) 3.15%

2000
Market value 3,024,267,213 20,320,033 0.68%
Dollar Delta (8,233,152,864) (82,876,909) 1.02%
Dollar Rho (9,805,786) (69,427) 0.71%
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Table 7
Time used by the clustering method and the machine learning method if monthly
time steps are used in the Monte Carlo method. The numbers are in seconds.

Number of clusters
100 500 1000 2000

k-prototypes 20.41 12.86 10.22 8.37
Monte Carlo 19.56 64.56 114.24 237.48
Kriging 5.83 26.8 52.69 106.86

Total 45.8 104.22 177.15 352.71

learning methods would be shown in Table 7. The new method
(with 2000 clusters) is about 66 times faster than the Monte Carlo
method.

In futurewewould like to improve and test the newmethod un-
der more complex settings. We would like to consider more com-
plex guarantees andmultiple underlyingmutual funds. In addition,
wewould like to test othermachine learningmethods such as neu-
ral networks.
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