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We present some progress in high dimensional data clustering, made at the Labo-
ratory for Industrial and Applied Mathematics over the last ten years. The focus is
on the role of information processing delay as an adaptive mechanism for pattern
recognition in subspaces of high dimensional data. Our objective is to develop
both mathematical foundation and effective techniques/tools for projective clus-
tering. We also present some applications to gene filtering, cancer diagnosis, neural
spike trains pattern recognition, text mining, stock associations, and online social
network news aggregation.

1. Introduction

The purpose of this survey is to organize a few PhD theses and MSc dis-

sertations, research publications, and projects conducted at the York Uni-

versity’s Laboratory for Industrial and Applied Mathematics (LIAM) in

a coherent framework about information processing delay, high dimension

data clustering, and nonlinear neural dynamics.

The objective of this decade long effort at LIAM is to develop both

mathematical foundation and effective techniques/tools for pattern recog-

nition in high dimensional data. We refer to the monograph21 for our

collection of existing clustering algorithms, and the survey paper44 for a

heuristic description of our philosophy that the nonlinear dynamic systems

theory may provide some theoretical foundation and principles based on

recent biological evidences for novel neural network inspired clustering ar-

chitectures.

In the papers9,10 and in the thesis by Cao8, we developed a novel neural

network architecture and algorithm to detect low dimensional patterns in a

high dimensional data set. These patterns are associated with the projec-

tive clusters introduced by Aggarwal and his co-workers from the IBMWat-

son Centre2. The developed projective adaptive resonance theory (PART)

has received much attention by data clustering researcher community and

industry, and formed the core of a Collaborative Research Development

project funded by the Natural Science and Engineering Research Coun-

cil of Canada (NSERC) in collaboration with Generation 5 Mathematical

Technologies Inc. The PART algorithm has since been used in a number of

applications. For example, it was used to develop a powerful gene filtering

and cancer diagnosis method in 39, which shows that PART was superior

for gene screening. As will be documented in later sections, the PART was

also used for clustering neural spiking trains, ontology construction, stock

associations, and online social network news aggregation. The PART algo-

rithm was further extended to deal with categorical data in the thesis 20,
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and with supervised clustering in the dissertations 36,28.

The PART architecture is based on the well known ART developed by

Carpenter and Grossberg, with a selective output signalling (SOS) mecha-

nism to deal with the inherent sparsity in the full space of the data points

in order to focus on dimensions where information can be found. The key

feature of the PART network is a hidden layer of neurons which incor-

porates SOS to calculate the dissimilarity between the output of a given

input neuron with the corresponding component of the template (statistical

mean) of a candidate cluster neuron and to allow the signal to be transmit-

ted to the cluster neuron only when the similarity measure is sufficiently

large. Recently discovered physiological properties of the nervous system,

the adaptability of transmission time delays and the signal losses that nec-

essarily arises in the presence of transmission delay, enabled us to interpret

SOS as a plausible mechanism from the self-organized adaptation of trans-

mission delays driven by the aforementioned dissimilarity. The result is

a novel clustering network, termed PART-D, with physiological evidence

from living neural network and rigorous mathematical proof of exceptional

computational performance. This clustering network was developed in 45.

Such an adaptation can be regarded as a consequence of the Hebbian

learning law, and the dynamic adaptation can be modelled by a nonlinear

differential equation. As a result, we obtained a new class of multi-scale

systems of delay differential equations with adaptive delay. A key issue

then is how to analytically formulate the delay adaptation. This links to

another PhD thesis by Beamish3, which proposed an alternative neural

network formulation of the Fitts’ law for the speed-accuracy trade-off of

information processing. A number of publications have been resulted from

this thesis work, including 5,6,4,7. It remains an open problem how to

use this alternative neurodynamical formulation to obtain a precise delay

adaption rule of the PART-D neural network architecture for projective

clustering.

When the delay adaption rates are in certain ranges, we anticipate non-

linear oscillatory behaviors of the PART-D neural network as the signal

processing delay has been recognized as a major mechanism for nonlinear

oscillation in the form of Hopf bifurcations, and this oscillation slows down

the convergence of the clustering algorithm. How to detect the birth and to

describe the global persistence of these nonlinear oscillations is the central

subject of the thesis by Hu29 and the subsequent publications32,31,30.

In summary, there have been increasing physiological evidences to sup-

port the idea of projective clustering using neural networks with delay adap-



88

tion, there has been some preliminary theoretical analysis to show why such

a network architecture works well for high dimensional data, and there have

been sufficient applications to illustrate our PART network based clustering

algorithm is efficient. An interdisciplinary approach for high dimensional

data clustering clearly shows the potential to develop a dynamical system

framework for pattern recognition in high dimensional data.

2. Clustering and clustering neural networks

Data clustering, a common cognitive task effectively performed by our cen-

tral nervous system routinely, becomes increasingly important and chal-

lenge in today’s “big data” reality. It aims to finding certain homogeneous

patterns in data sets containing many heterogeneous structures. The goal

of data clustering is to reorganize subsets of data points into groups, called

clusters, so that the data points within the same group share some com-

mon features while points in different clusters are distinguished by some of

these common features. In unsupervised clustering, these features have to

be identified during the process of clustering.

The approach taken by the Laboratory for Industrial and Applied Math-

ematics (LIAM) towards data clustering problem is to consider the cluster-

ing process as an inverse process of pattern formation of complex dynamical

systems. In this approach, the goal for clustering a data is to construct a

dynamical system to automatically and adaptively identify patterns hidden

in the given data set. Namely, for a given data set D in Rm, we try to

construct a dynamical system with data-specified local attractors (such as

equilibria or periodic orbits) CR1, · · · , CRn so that each CRi represents a

cluster (for example, the centre of a cluster) and its domains of attraction

gives the cluster criterion that distinguishes this cluster from others.

There have been a few effective projected clustering algorithms devel-

oped such as CLIQUE and PROCLUS, see 44,21 and references therein.

Here we describe a neural dynamics inspired architecture with which a dy-

namical system is constructed from adaptively processing a high dimension

data. A key issue is what constitutes of the minimal size and structure of

a nonlinear dynamical system required to identify the clusters hidden in

arbitrary unknown subspaces of the given data set.

We consider a given data set D of n points in the m dimensional Eu-

clidean space. If we try to mimic the clustering functioning of our central

nervous system to construct a network of neurons to identify the hidden

patterns of the data set, we will need:
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• a layer of m neurons to process inputs (the input layer);

• a layer of neurons to represent clusters (the clustering layer), with

the number of clustering neurons unspecified;

• synaptic connections (bottom-up weights) between the input layer

and the clustering layer to weight appropriately the output (acti-

vation) of each input neuron so that every clustering neuron can

calculate the sum of weighted activations generated by a given in-

put vector for the purpose of selecting a candidate cluster;

• synaptic connections among clustering neurons so that this layer of

neurons can automatically select a winner as the candidate cluster;

• a mechanism to update the feature (statistical mean) of the selected

cluster neuron and to store the updated feature at the synaptic

connections (top-down weights, or templates);

• a mechanism and learning rule with which the top-down weights

and bottom-up weights are updated to learn the experience.

Specific principles for the connection topology (competitive network) of

the clustering layer and for the learning rules to update top-down and

bottom-up weights have led to the renowned ART (Adaptive Resonance

Theory) neural networks, which have been shown to be very effective in

self-organized clustering in full dimensional spaces. ART was first intro-

duced by Grossberg in 197626,27 in order to analyze how brain networks

can learn in real time about a changing world in a rapid but stable fashion,

based on which Capenter and Grossberg14,13,16 developed two classes of

ART neural network architectures ART1 and ART2, whose computational

performance (dynamics) is described by systems of differential equations.

ART1 self-organizes recognition categories for arbitrary sequences of binary

input patterns, while ART2 does the same for either binary or continuous

inputs. Some other classes of ART neural network architectures such as

Fuzzy ART12, ARTMAP11, Fuzzy ARTMAP17, and Gaussian ARTMAP43

were then developed with increasingly powerful learning and patten recog-

nition capabilities in either an unsupervised or a supervised mode.

Examples have been provided in Cao-Wu 9 to show that the ART neural

network needs additional structure in order to perform the task of subspace

clustering in high dimensional data sets since ART focuses on similarity of

patterns in the full dimensional space. The first paper 9 of a series of studies

introduces a new mechanism to deal with the identification of subspaces

where clusters are formed, this is the so-called selective output signaling

(SOS in short) and the corresponding ART is termed PART. This SOS
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mechanism selectively selects the signal from an input neuron only when

the signal is similar to the top-down weight (template) between the input

neuron and the targeted clustering neuron, hence PART focuses on only

those dimensions where information is relevant for a particular cluster. We

refer to 9 for a schematic illustration of the PART architecture.

3. Projected ART with Adaptive Delay

Cao and Wu 9,10 implemented PART and demonstrated that PART net-

works outperform ART networks for pattern recognition in high dimen-

sional spaces. The key feature of a PART network is a hidden layer which

incorporates the SOS mechanism to calculate the similarity between the

output of a given input neuron with the corresponding component of the

template of a candidate cluster neuron and allows the signal to be selec-

tively transmitted to the cluster neuron only when the similarity measure

is sufficiently large. So, in PART the output signal of an input neuron will

be completely prohibited to be transmitted to its target cluster neuron if

the similarity measure is small although in practice, this output signal may

still play a (relatively minor) role in the final clustering result. This issue

has been successfully addressed by the novel clustering network, termed

PART–D, which interprets the SOS mechanism in terms of two recently

emphasized properties of the nervous system, namely the adaptability of

transmission time delays and the signal losses that necessarily arises in the

presence of transmission delay. In PART-D, the SOS mechanism is shown to

arise because the self-organized adaptation of transmission delays is driven

by the dissimilarity between the input pattern and the stored pattern (rep-

resented by the template of a cluster neuron). Such an adaptation can be

regarded as a consequence of the Hebbian learning law, and the dynamic

adaptation can be modeled by a nonlinear differential equation. As a re-

sult, we obtain a new class of systems of delay differential equations with

adaptive delay as follows:

ǫp
dxi(t)

dt
= −xi(t) + Ii(t), (1)

ǫc
dyj(t)

dt
= −yj(t) + [1−Ayj(t)][fc(yj(t)) + Tj(t)] (2)

− [B + Cyj(t)]
∑

k 6=j,k∈Λ2

fc(yk(t)), (3)

Tj(t) = D
∑

1≤i≤m

zij(t)fp(xi(t− τij(t))e
−ατij(t), (4)
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β
dτij(t)

dt
= −τij(t) + E[1 − hij(t)], (5)

hij(t) = hσ(d(fp(xi(t)), wji(t)))lθ(zij(t)), (6)

δ
dzij(t)

dt
= fc(yj(t))[(1 − zij(t))Lfp(xi(t− τij(t))e

−ατij(t), (7)

− zij(t)
∑

k 6=i,k∈Λ1

fp(xk(t− τkj(t)e
−ατkj(t)], (8)

γ
dwji(t)

dt
= fc(yj(t))[−wji(t) + fp(xi(t− τij(t))e

−ατij(t))]. (9)

In the above model, the activation of the i-th inout neuron is denoted

by xi, the activation of the j-th clustering neuron is denoted by yj; the

bottom-up weight between the i-th input neuron and the j-th clustering

neuron is denoted by zij , while the top-down weight is denoted by wji.

In the Short Term Memory trace equations for input neurons, 0 < ǫp ≪

1, Ii is the constant input imposed on the i-th neuron. This is based on

the assumption that for an isolated neuron, the dynamics is the balance

of the internal decay and the external input excitation. For the change of

the Short Term Memory trace equations for clustering neurons, we assume

that the activation of the cluster neuron depends on the internal decay, the

excitation from self-feedback, the inhibition from other cluster neurons and

the excitation by the bottom-up filter inputs from input neurons. In the

equations, 0 < ǫc ≪ 1, fc : R → R is a signal function, A, B, and C are

non-negative constants. In the the bottom-up filter input Tj calculation,

D is a scaling constant, and fp : R→ R is the signal function of the input

layer. It is assumed the signal transmissions between two layers are not

instantaneous and the signal decays exponentially at a rate 1/α > 0.

The term τij is the signal transmission delay between the ith input

neuron and the j-th clustering neuron. We assume this delay is driven

by the dissimilarity in the sense that the signal processing from the input

neuron to the cluster neuron is faster when the output is similar to the cor-

responding component of wji of the feature vector wj = (wji)1≤i≤m of the

cluster neuron. In the equation for the delay adaptation, β > 0, E ∈ (0, 1)

are constants and hij(t) = S(d(fp(xi(t)), wji(t)), zij(t)) is the similarity

measure between the output signal fp(xi(t)) and the corresponding com-

ponent wji(t) of the feature vector of the cluster neuron, with respect to

the significance factor of the bottom-up synaptic weight zij(t), here d is

the usual distance function in the one dimensional Euclidean space and

S : R+ × [0, 1] → [0, 1] is a given function, non-increasing with respect to
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the first argument and non-decreasing with respect to the second argument.

Moreover, S(0, 1) = 1 (The similarity measure is 1 with complete similarity

and maximal synaptic bottom-up weight) and S(+∞, z) = S(x, 0) = 0 for

all z ∈ [0, 1] and x ∈ R+ := [0,∞) (The similarity measure is 0 with com-

plete dissimilarity or minimal bottom-up synaptic weight). In the above

formulation, we used some special function of S where hij(t) is determined

by the distance between the output signal fp(xi(t)) and the corresponding

component wji(t) of the feature vector of the cluster neuron, multiplied

by the significance factor of the bottom-up synaptic weight zij(t), with a

threshold parameter θ > 0.

The equation governing the change of the weights follows from the

synaptic conservation rule of 41 and only connections to activated neu-

rons are modified. The top-down weights are modified so that the template

will point to the direction of the delayed and exponentially decayed out-

puts from the input layer (with the exponential decay rate γ > 0). The

bottom-up weights are changed according to the competitive learning law

and Weber Law Rule that says that LTM (Long Term Memory) size should

vary inversely with input pattern scale to present a clustering neuron that

has learned a particular pattern from also coding every superset pattern

(see 15). In the equation, 0 < δ ≪ γ = O(1) and L > 0 is a given constant.

We refer to 9 for the equations of the LTM equations for non-committed

candidate neurons and the discussion of a reset mechanism. In particular,

a candidate (active) node will be reset if at any given time t ≥ 0, the degree

of match is less than a prescribed vigilance. Namely, reset occurs if and

only if
∑

1≤i≤m hij(t) < ρ, here ρ ∈ {1, 2, . . . ,m} is a vigilance parameter.

The following theorem describes the computational dynamics during a

trial.

Theorem 3.1. We can choose small ǫp, ǫc, and δ so that:

(i) (Inhibition of Non-Candidate Neurons): For j 6= J and t ≥ 0,

yj(t) < ηc and fc(yj(t)) = 0;

(ii) (Sustained Excitation of the Candidate Neuron): There exists Γ >

0 such that yJ(t) < ηc and fc(yJ(t)) = 0 when t < Γ, and yJ(t) ≥ ηc
and fc(yJ(t)) = 1 when t ≥ Γ;

(iii) (Invariance of Similarity): For any t ≥ 0, hij(t) = hij(0);

(iv) (Learning at Infinity): For any j ∈ Λc with j 6= J , zij(t) and wji(t)

remain unchanged for all t ≥ 0. But limt→∞ wJi(t) = fp(Ii)e
−ατ∗

iJ
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and

lim
t→∞

ziJ(t) =

{
0 if hiJ (0) = 0,

L
L+li

if hiJ (0) = 1,

where li = #{k 6= i;hkJ(0) = 1}.

Learning may take place in a much faster pace, the following theorem

describes the transit computation performance and it also shows an amaz-

ing choice of a discrete Lyapunov function that was used to prove both

theorems.

Theorem 3.2. We can choose small ǫp, ǫc, and δ so that:

(v) (Fast Excitation): Γ ∈ (0, 1);

(vi) (Fast Learning): Write z
ǫp,ǫc,δ
ij and w

ǫp,ǫc,δ
ji to indicate explicitly

the dependence on (ǫp, ǫc, δ). Then we have (with q = 1− e−1/γ)

lim
δ→0

z
ǫp,ǫc,δ
iJ (1) =

{
0 if hiJ(0) = 0,

L
L+li

if hiJ(0) = 1,

lim
ǫp→0,β→0

w
ǫp,ǫc,δ
Ji (1) = (1− q)wJi(0) + qfp(Ii)e

−ατ∗

iJ ;

(vii) (Convergence of Projective Subspace) Let Dj(t) = {i; lθ(zij(t)) =

1}. Then, as ǫp, ǫc, δ → 0, we have

Dj(t) = Dj(0) for any j 6= J ;

DJ(t2) ⊆ DJ(t1) if t2 ≥ t1 ≥ 0;

DJ(t) = DJ(1) for all t ≥ 1.

These theorems describe the computational performance of PART dur-

ing a trial, either in terms of long-term behaviours or transit behaviours. It

confirms that the network does provide the winner-take-all paradigm: all

clustering neurons with j 6= J are always inactive, but the J-th clustering

neuron will be activated after some finite time. This activated clustering

neuron receives the the largest bottom-up filter input (TJ), and (v) shows

that the identification of a clustering neuron can take place very fast. The

above theorems also give the learning formulae (either long-term or fast

learning). Note also that Dj(t) is the set of dimensions of projected sub-

space associated with cluster representing by the j-th neuron at time t, and

above results indicate that the set of dimensions is non-increasing during

the learning. This non-increasing property of dimensions contributes to

stabilizing learning in response to arbitrary sequences of input patterns.
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4. Algorithms and applications

An effective algorithm based on the above results, specially the fast learning

rules, has been developed in 9,10 (for PART) and then in 45 for PART-D.

These algorithms consist of the following major steps:

• Input Processing and Select Output Signals from Input Layer;

• Activation, Inhibition, and Identification of a Potential Cluster;

• Confirmation, Vigilance and Reset;

• Fast Learning;

• Identification of Subspaces;

• Outliers collection.

The time cost of these algorithms is O(mnNM), where m is the number of

dimensions of data space, n is the number of clustering neurons, m is the

number of all data points and M is the number of iterations.

4.1. Experiments on synthetic data

Extensive simulations on high dimensional synthetic data showed that the

clustering layer becomes stable after only a few iterations. Here we describe

one example on a high dimensional synthetic data generated via the method

introduced by Aggarwal et al 1 in 1999. The input data has 20,000 data

points in a 100-dimensional space, which has 6 clusters generated in 20,

24, 17, 13, 16 and 28-dimensional subspaces respectively. The data points

are presented in random order, and the clustering results can be reported

as number of clusters found, dimensions found, centers of clusters found,

and the contingency table of input clusters (original clusters) and output

clusters (clusters found).

Output�Input 1 2 3 4 5 6 Sums

1 5144 0 0 0 0 0 5144

2 0 1878 0 0 0 0 1878

3 0 0 4412 0 0 0 4412

4 0 0 0 2716 0 0 2716

5 0 0 0 0 2608 0 2608

6 0 0 1 0 0 1185 1186

Outliers 106 66 239 290 68 287 2056

Sums 5250 1944 4652 3006 2676 1472 20000
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The above table shows the simulation results with ρ = 10. Note

that in the reported results we have treated as outliers the data points

in the clustering neurons with very small sizes (less than 1.2% of total

data points). The simulation results show that the PART algorithm suc-

ceeds in finding the exact number of original clusters and in finding al-

most exact centers of all original clusters. Note that the dimensions found

in different clusters are different, for example, cluster 1 is formed with

respect to dimensions 10, 12, 17, 37, 46, 58, 61, 79, 81, 99, while cluster 2 is

formed with respect to dimensions 5, 8, 13, 15, 16, 18, 30, 70, 85, 92. Also

note that the dimensions found are not identical to those of the origi-

nal clusters (for example, the dimensions of the original cluster 1 include

1, 6, 10, 12, 15, 17, 31, 36, 37, 38, 45, 46, 52, 54, 58, 61, 67, 79, 81, 99), but these

found dimensions are contained as subsets of the associated dimensions of

original clusters. These subsets are sufficiently large so that, after a fur-

ther reassignment procedure, we are able to reproduce the original clusters

from the found cluster centers, the found number of clusters and the found

dimensions.

4.2. Application to neural spiking trains clustering

In 33, PART was used as an effective tool for clustering neural spiking

trains via transient behaviors. It was noted that “the detection of non-

stationarities in neural spike trains recorded from chronically implanted

multielectrode grids, such as transient synchronizations in a neural sub-

population, becomes increasingly difficult as the number of electrodes in-

creases”. This calls for unsupervised learning algorithms that can be used

to “group, or cluster, spike trains based on the presence of local, shared

features”. The feature of PART that allows comparisons be made between

inputs and learned patterns using a subset of the total number of spikes

available enables the network to learn the characteristics that defines each

cluster making as few assumptions about the statistical properties of the

spike trains as possible.

“The result is an extremely powerful tool for clustering neural spike

trains that is computationally inexpensive. The fact that projective

clustering dramatically increases the ability of an artificial neural

network to discover patterns in its sensory inputs raises the ques-

tion of whether analogous mechanisms operate in the nervous sys-

tem. Thus we anticipate that PART neural networks will not only

have increasing applications for data analysis, but also have the
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potential to provide insights into the computational activities of

the nervous system.”

Spike train inputs for the PART neural network have the general form





bin1

︷ ︸︸ ︷
s11, s12, · · · , s1p,

bin2

︷ ︸︸ ︷
s21, s22, · · · , s2p, · · · ,

bink
︷ ︸︸ ︷
sk1, sk2, · · · , skp



 ,

where the dimension, m, is equal to the number of bins, bink, of size ∆t

times the number of statistical features of interest, and the notation skp
denotes the p–th statistical feature evaluated for the k–th bin. The number

of input neurons is m and the number of clustering neurons is much greater

than the expected number of clusters. At onset all of the clustering neurons

are non–committed. The few round of trails generates a committed neuron

to represent a cluster. Once the committed clustering neuron has been

determined, the next spike train is presented. All spike trains that belong

to the same committed neuron belong to the same cluster.

The number of input patterns that can be learned by a PART neural

network is limited only by the finiteness of the number and length of spike

trains that can be presented to it. There are a number of consequences for

the practical application of PART neural networks:

• it is better to cluster data sets with respect to a few, e.g. one,

statistical features at a time;

• the order of presentation of spike trains may have an influence of

the clustering results;

• the number of clustering neurons must be larger than the number

of suspected clusters;

• there will always be a small number of spike trains which do not

cluster well: following 9 we placed all such data into an outlier

node.

The PART clustering algorithm was validated on populations of neural

spike trains constructed using two types of model neurons: 1) the leaky

integrate and fire (LIF) mode, and 2) a reduced Hodgkin–Huxley model.

The goal in constructing these data sets was to pose a difficult clustering

problem consistent with the known physiological responses of neurons. Val-

idation using this procedure is facilitated by the fact that the natures and

numbers of the true clusters are known.
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4.3. Experiments on online social network news aggregation

We have recently considered 19,46 the issue of news aggregation in online

social networks with a pilot project on the social news website Digg.com, a

content discovery and sharing application launched in 2004. According to

the traffic statistics by Alexa.com in 2010, Digg is the 117th most popular

website globally and 52nd in the USA40. Digg allowed people to vote web

content up or down, called digging and burying, respectively. Users in

Digg can share the content with other users who are connected to them by

voting for or against the news. We have used the dataset from K. German

(http://www.isi.edu/lerman/downloads/digg2009.html), who collected the

information of stories on the Digg’s front page over a period of a month in

2009. 3553 popular stories are voted for 3,018,197 times by 139,409 distinct

users and on average, each story received about 850 votes.

All of the stories were provided the voter ID as well as the exact time

of when voted. We are able to obtain the time series curve of each story.

Apparently, large amount of superficial information can be found, such

as how the popularity was, when the curve started and how the voting

rate was going. When thousands of news gather together, they show some

similarities to the tendency of the curves. We formatted the votes data over

a period of 50 hours, as is used in 42. Most of the stories were almost fixed

and experienced little change on the vote number at the end of 50 hours.

For each story, at the end of each hour, we obtained the cumulative number

of voted users and used the value as a measurement of voting density. Here

we can get a 3553× 50 matrix indicating the increasing vote trend for all

the stories.

Obviously, clustering these data in the 50 dimensional spaces is mean-

ingless since every news distinguished itself from all others. Indeed, when

we try to cluster these news in the full space, we found a large number of

clusters with every cluster containing very small number of pieces of news.

Projective clustering in relatively lower dimensional subspaces does gener-

ate some meaningful clusters, for example, Figure 1 gives a cluster, when

we specify the PART algorithm to find clusters in subspaces of at least

30 dimension. Effectively, these pieces of news are grouped in one single

cluster as they all reached the equilibrium states (final size of the news out-

break) after 20 hours from the source, and the final accumulated numbers

of votes are close to each other. A better way is to look at the number

of new votes each hour, and this give a curve of “influence votes” for each

news, very much similar to the typical epidemic curve of an outbreaking
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infectious disease. Then we can define certain features for each news, such

as the initial time ti when the total number of votes reach a pre-assigned

number (say 50 in Figure 2), the beginning and ending times (tb and te)

of the so-called “viral period”–when the “epidemics” starts and ends, the

turning point ttu when the growth rate of the number of influenced users

changes from being positive to negative. In this way, each time series of a

given news is characterized by these features. Figure 2 gives a projective

cluster of news with respect to the subspaces (ti, tb, ttu, te).

Figure 1. An example of projective clustering of the time series for the accumulated
votes in the Digg networks. The cluster is formed based on the final size, and for those
news reaching the equilibrium state within 20 ours since their release from the sources.

4.4. Application to gene filtering and cancer diagnosis

In 37, PART was used as a gene filtering method for the construction of

robust prognostic predictors. Subspace clustering is essential for establish-

ing prognostic predictors of various diseases using DNA microarray analysis

technology, since it is desired to selectively find significant genes for con-

structing the prognostic model and also necessary to eliminate nonspecific

genes or genes with error before constructing the model. According to the

authors,

“Genes selected by PART were subjected to our FNN-SWEEP

modeling method for construction of a cancer class prediction

model. The model performance was evaluated through compar-

ison with a conventional screening signal-to-noise (S2N) method
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Figure 2. An example of projective clustering of the news in the Digg network, us-
ing features that are selected to reflect some “epidemic” nature of the number of new
“influence votes.”

or nearest shrunken centroids (NSC) method. The FNN-SWEEP

predictor with PART screening could discriminate classes of acute

leukemia in blinded data with 97.1% accuracy and classes of lung

cancer with 90.0% accuracy, while the predictor with S2N was only

85.3% and 70.0% or the predictor with NSC was 88.2% and 90.0%,

respectively. The results have proven that PART was superior for

gene screening.”

The PART network was also used in 39 as a gene filtering method for

cancer diagnosis marker extraction for soft tissue sarcomas. The authors

noted that

“In a previous study, we developed the PART filtering method

by modifying PART, and reported that PART exhibited a higher

performance than conventional methods, such as S2N and NSC.

The combination method of PART and BFCS (PART-BFCS) was

developed and applied to gene expression data, such as lymphoma

and esophageal cancer. In the present study, we applied the various

filtering methods to the gene expression profile data for the STS

subtypes and constructed SVM models using the filtered genes.

The results showed that the accuracy of the model based on the

genes filtered by PART was the highest.”
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Further, the same group of authors combined PART with boosted fuzzy

classifier and the SWEEP operator method effectively for gene selection.

They concluded that 38

“In the present study, we investigated combinations of various fil-

ter and wrapper approaches, and found that combination method

of PART and BFCS (a kind of boosting) is significantly superior

to other methods with regard to high prediction accuracy for con-

struction of class predictor from gene expression data. This method

could select some marker genes related to cancer outcome. In ad-

dition, we proposed improved RIBFCS of PART-BFCS. Based on

this new index, the discriminated group with over 90% prediction

accuracy was separated from the others. It is necessary that there

are about 90% or more prediction accuracy in the practical di-

agnosis application. These results suggest that the PART-BFCS

method has a high potential to function as a new method of marker

gene selection for the diagnosis of patients, using high dimensional

data such as DNA microarray, mass spectrometry (MS), and two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE).”

4.5. Application to text mining

In 34, PART was used as an effective tool for reducing multidimensional

text document space and also the text document clustering. It was shown

that PART overcomes some lacks of computational complexity in tradi-

tional clustering algorithms in multidimensional space. They noted that

with appropriate parameter settings of distance, the PART neural network

achieved very good results on the clustering of multidimensional text doc-

uments and sorts precisely selected documents to corresponding supposed

clusters. In addition to the correct classification of the text documents,

PART was able to distinguish the projective dimension centers in each

cluster and group noisy documents included in the outlier cluster. They

stated that

“Clustering algorithm via PART can correctly collect input docu-

ments to corresponding clusters, when the number of dimensions

in a text document dataset increases, distance measure does not

become increasingly meaningless and effort of system do not go

down. The PART with appropriate input parameters enables to

find the correct number of clusters, the correct centers for each
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cluster and sufficiently large subset of dimensions in which clus-

ters are formed. Results of our approach show, that application of

PART for clustering of text documents can easy discover intrinsic

clusters and also discover noisy patterns in datasets of text doc-

uments. Thanks to using average similarity degree function and

exact settings of input parameters has this modification of PART

very good computational efficiency in process of C.”

4.6. Application to stock associations

In 35, the PART algorithm was improved with buffer management known

as BPART to overcome the disadvantage of PART depending on accu-

rate parameters and orders of input data sets. The authors noted that

although “Projective Adaptive Resonance Theory, based on the ART and

PROCLUS, is very good at recognizing self-organizing patterns in arbitrary

sequences,” the clustering accuracy may be degraded if an incorrect value ρ

is chosen. They proposed an improvement-buffer management, which can

neglect the noise data sets and achieve a parameter-free algorithm.

“We find that there are 4 out of 100 stocks which have concurrence

associations. In detail, 00001 Cheung Kong, 00004 Wharf (Hldgs),

00012 Henderson Land and 00293 Cathay Pac Air are related (or

concurrence) in 90 days out of 481 transaction days, and partly re-

lated in 105 days out of 481. Compared with PART, our algorithm

initializes the important parameter ρ to 2, which is easily estimated

and applied. And from this result above, any value more than 4

fails to find the concurrence of four stocks. Therefore, our algo-

rithm over PART can obtain the good result without an accurate

parameter ρ.”

4.7. Application to ontology construction

In 18, the PART algorithm was used along with Bayesian network proba-

bility theory to construct an ontology in the system. In details, it was an

efficacious tool for clustering the web pages based on the frequency of the

term. It was shown that the PART tree can provide critical information

about the hierarchical relation of the projective clusters. The PART neural

network does a good job because it not only considers the data points but

also the dimensions. What’s more, it can deal with the lack of flexibility in

the cluster.
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“PART shows better results when the quantity of data is large.

In this experiment, we attempt to demonstrate that PART is bet-

ter than ART in web page clustering. We used the ART neural

network to cluster all the web pages (1523 web pages) and com-

pared the result with the results of clustering by PART. In order

to emphasize the equity of comparison, the parameter settings of

ART were identical to those of PART .... Afterward, we used the

method described in Chen et al. (2008) to generate the pattern

for ART. It is clear that the concept precision (CP ) and concept

location precision (C L P ) of PART are both better than those of

ART.”

4.8. Comments on challenges and future directions

Seeking a neural-network inspired dynamical system architecture that auto-

matically identifies projected clusters in high dimensional data leads us very

naturally to the extension of the celebrated Adaptive Resonance Theory by

incorporating the delay adaptation in neural computation. This extension

generated an effective Projective Adaptive Resonance Theory neural net-

work, whose global dynamical behaviour is governed by a large scale system

of delay differential equations with adaptive delay. This adaptive delay, a

special case of the so-called state-dependent delay, has been the focus of

recent and intensive study in the field of functional differential equations

and infinite dimensional dynamical systems. Consequently, we hope fur-

ther development, in terms of neural physiological evidence, the qualitative

and numerical theory, and applications, of this neural network architecture

should provide inspiration for the development of a comprehensive theory

for systems of state-dependent delay differential equations. Specifically, we

have mentioned the PhD thesis of Qingwen Hu and the subsequent publi-

cations about the nonlinear oscillations in the form of Hopf bifurcation and

global continuation. There is some evidence in the paper of 45 that PART-D

may exhibit some oscillatory behaviours in certain parameter ranges, and

how the general theory can be applied to exclude or confirm this oscilla-

tory behaviours of a clustering algorithm remains to be a subject for future

study.

We have shown that delay in neural networks may play a very useful

role in regulating the speed with which different set of information is pro-

cessed in order to identify hidden patterns in subspaces. This is based on

the assumption that delay decays naturally without learning and external
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stimuli, and that adaptive delay is increased if the input pattern is different

from the stored pattern of a potential cluster. Our PART-D model formu-

lates this as a simple linear equation with forcing and we had some very

preliminary justification of this delay decay and adaptation law using the

cable equation in the appendix of 45. We would like to derive this delay

decay and adaptation law from some first principles in neural dynamics. It

would be interesting to see how this is linked to the thesis of Beamish3 and

its subsequent publications 5,6,4,7. In particular, we would like to know how

to use this alternative neurodynamical formulation to obtain a precise de-

lay adaption rule of the PART-D neural network architecture for projective

clustering.

PART has been successfully extended to deal with category data and

fuzzy clustering in the thesis of Gan 20 and in its subsequent publications
22,24,23,25 . How to extend PART-D along this direction remains open.

There have been two MSc theses 36,28 at LIAM dedicated to extending

PART for supervised clustering to deal with the useful annotation infor-

mation of some data sets, further development would need good indices

to evaluate the effectiveness of a good clustering algorithm and clustering

results, as functions of algorithm-relevant parameters.

Finally, we note that high-dimensional data clustering poses significant

challenges for traditional clustering algorithms when correlations among

features appear as a result of increasing number of dimensions. These local

arbitrarily oriented correlations are the interesting hidden patterns in many

applications. In 47, we developed a new correlation clustering algorithm

by designing an ART-type neural network architecture. Our new iterative

clustering algorithm PART-D-MCA incorporates minor component analysis

to a delay-driven winner-take-all architecture. The resulting method shows

very promising properties, and demonstrates the potential of extending this

theory for clustering data sets in nonlinear submanifolds.
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