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Abstract

The fuzzy k-Modes algorithm introduced by Huang and Ng [Huang, Z., & Ng, M. (1999). A fuzzy k-modes algorithm for clustering
categorical data. IEEE Transactions on Fuzzy Systems, 7(4), 446–452] is very effective for identifying cluster structures from categorical
data sets. However, the algorithm may stop at locally optimal solutions. In order to search for appropriate fuzzy membership matrices
which can minimize the fuzzy objective function, we present a hybrid genetic fuzzy k-Modes algorithm in this paper. To circumvent the
expensive crossover operator in genetic algorithms (GAs), we hybridize GA with the fuzzy k-Modes algorithm and define the crossover
operator as a one-step fuzzy k-Modes algorithm. Experiments on two real data sets are carried out to illustrate the performance of the
proposed algorithm.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

As a primary tool of data mining, cluster analysis (Cor-
mack, 1971; Gordon, 1987; Jain, Murty, & Flynn, 1999;
Murtagh, 1983), also called segmentation analysis or tax-
onomy analysis, is a way to create groups of objects, or
clusters, in such a way that objects in one cluster are very
similar and objects in different clusters are quite distinct.
In general, a well-designed clustering algorithm usually
involves the following four design phases: data representa-
tion, modeling, optimization and validation (Buhmann,
2003). The data representation phase predetermines what
kind of cluster structures can be identified in the data.
On the basis of data representation, the modeling phase
defines the notion of clusters and the criteria that separates
the desired group structures from unfavorable ones. In the
modeling phase, a quality measure which can be either
optimized or approximated during the search for hidden
structures in the data is produced. Since the clustering pro-
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cess is an unsupervised process, the validation phase is nec-
essary to validate the results produced by the clustering
algorithm.

In general, clustering algorithms are classified into two
categories (Everitt, Landau, & Leese, 2001; Jain & Dubes,
1988): hard clustering algorithms and fuzzy clustering algo-
rithms. In the framework of hard clustering, each object
belongs to one and only one cluster. On the contrary, in
the framework of fuzzy clustering each object is allowed
to have membership functions to all clusters rather than
having a distinct membership to exactly one cluster. Math-
ematically, a fuzzy clustering problem can be represented
as an optimization problem (Dunn, 1974):

min
W ;Z

F ðW ; ZÞ ¼
Xk

l¼1

Xn

i¼1

wa
lidðzl; xiÞ

such that

0 � wli � 1; 1 � l � k; 1 � i � n; ð1aÞ
Xk

l¼1

wli ¼ 1; 1 � i � n; ð1bÞ

0 <
Xn

i¼1

wli < n; 1 � l � k; ð1cÞ
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where n is the number of objects in the data set under con-
sideration, k is the number of clusters, D ¼ fx1; x2; . . . ; xng
is a set of n objects each of which is described by d attri-
butes, Z ¼ fz1; z2; . . . ; zkg is a set of k cluster centers,
W ¼ ðwliÞ is a k � n fuzzy membership matrix, a 2 ½1;1�
is a weighting exponent, and dðzl; xiÞ is a certain distance
measure between cluster center zl and the object xi.

A well-known fuzzy clustering algorithm is the fuzzy
k-Means algorithm due to Bezdek (1974) and Ruspini
(1969). The fuzzy k-Means algorithm starts with an initial
value of W and then repeatedly iterates between estimating
cluster centers Z given W and estimating the membership
matrix W given Z until two successive values of W or Z
are equal. Since the fuzzy k-Means algorithm works only
on numeric values, a fuzzy k-Modes algorithm (Huang &
Ng, 1999) has been developed for the purpose of clustering
categorical data sets. A known problem associated with
both the fuzzy k-Means algorithm and the fuzzy k-Modes
algorithm is that they may only stop at local optima of
the optimization problem, since the function F ðW ; ZÞ is
non-convex in general (Ng & Wong, 2002).

To find a global solution of the optimization problem,
genetic algorithms (GAs) (Davis, 1991) and tabu search
(TS) based techniques (Glover & Laguna, 1997) are
applied. The genetic k-Means algorithm (Krishna & Nar-
asimha, 1999), for example, integrates the k-Means algo-
rithm and the genetic algorithm so as to find the globally
optimal solution. In order to find the globally optimal solu-
tion for the fuzzy k-Modes algorithm, Ng and Wong intro-
duced tabu search based fuzzy k-Modes algorithm (Ng &
Wong, 2002).

The main aim of this paper is to develop a genetic fuzzy
k-Modes algorithm, which integrates the genetic algorithm
and the fuzzy k-Modes algorithm in order to find the glob-
ally optimal solution of the optimization problem. The out-
line of the paper is as follows. In Section 2, the fuzzy k-
Modes algorithm is briefly reviewed. In Section 3, the
new genetic fuzzy k-Modes algorithm is proposed. In Sec-
tion 4, the experimental results are presented to illustrate
the effectiveness of our new algorithm. Finally, some con-
cluding remarks are given in Section 5.
2. Fuzzy k-Modes

To describe the fuzzy k-Modes algorithm (Huang & Ng,
1999), let us begin with some notations. Let D ¼ fx1;
x2; . . . ; xng be a categorical data set with n objects each
of which is described by d categorical attributes A1;
A2; . . . ;Ad . Attribute Ajð1 � j � dÞ has nj categories, i.e.,
DOMðAjÞ ¼ faj1; aj2; . . . ; ajnj

g. Let the cluster centers be
represented by zl ¼ ðzl1; zl2; . . . ; zldÞ for 1 � l � k, where k
is the number of clusters. The simple matching distance
measure between x and y in D is defined as

dcðx; yÞ ¼
Xd

j¼1

dðxj; yjÞ; ð2Þ
where xj and yj are the jth components of x and y, respec-
tively, and

dðxj; yjÞ ¼
0 if xj ¼ yj;

1 if otherwise:

�

Then the objective of the fuzzy k-Modes clustering is to
find W and Z that minimize

F cðW ; ZÞ ¼
Xk

l¼1

Xn

i¼1

wa
lidcðxi; zlÞ; ð3Þ

subject to 1a, 1b and 1c, where a > 1 is the weighting com-
ponent, dcð�; �Þ is defined in Eq. (2), W ¼ ðwliÞ is the k � n
fuzzy membership matrix, and Z ¼ fz1; z2; . . . ; zkg is the
set of cluster centers. Note that a ¼ 1 gives the hard
k-Modes clustering, i.e., the k-Modes algorithm.

To update the cluster centers given the estimate of W ,
Huang and Ng (1999) proved the following theorem.

Theorem 1. The quantity F cðW ; ZÞ defined in Eq. 3 is

minimized if and only if zlj ¼ ajr 2 DOMðAjÞ where

r ¼ arg max
1�t�nj

X
i;xij¼ajt

wa
li;

i.e.,X
i;xij¼ajr

wa
li �

X
i;xij¼ajt

wa
li; 1 � t � nj

for 1 � j � d and 1 � l � k.

To update the fuzzy membership matrix W given the
estimate of Z, Huang and Ng (1999) also presented the fol-
lowing theorem.

Theorem 2. Let Z ¼ fz1; z2; . . . ; zkg be fixed, then the fuzzy

membership matrix W which minimizes the quantity F cðW ; ZÞ
defined in Eq. (3) subject to 1a, 1b and 1c is given by

wli ¼

1 if xi ¼ zl;

0 if xi ¼ zh; h–l;
1Pk

h¼1

dðxi ;zlÞ
dðxi ;zhÞ

h i 1
a�1

if otherwise;

8>>><
>>>:

1� l� k; 1� i� n:

Based on the two theorems described above, the fuzzy
k-Modes algorithm can be implemented recursively (see
Algorithm 1).

Algorithm 1. Fuzzy k-Modes algorithm, r is the maximum
number of iterations.
1:
 Choose initial point Z0 2 Rmk;

2:
 Determine W 0 such that the cost function F ðW 0; Z0Þ is

minimized;

3:
 for t ¼ 1 to r do
4:
 Determine Z1 such that the cost function F ðW 0; Z1Þ
is minimized;
5:
 if F ðW 0; Z1Þ ¼ F ðW 0; Z0Þ then
6:
 stop;
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7:
 else
8:
 Determine W 1 such that the cost function
F ðW 1;Z1Þ is minimized;
9:
 if F ðW 1; Z1Þ ¼ F ðW 0; Z1Þ then

10:
 stop;

11:
 else
12:
 W 0 ( W 1;

13:
 end if
14:
 end if
15:
 end for
3. Genetic fuzzy k-Modes

In general, a GA consists of five basic elements: coding

or string representation, population initialization, selection,
crossover and mutation. In order to speed up the conver-
gence process, we use a one-step fuzzy k-Modes algorithm
in the place of the crossover process. In this section, we will
introduce these five elements of the GA for fuzzy k-Modes
clustering.

3.1. String representation

A natural coding approach is to represent the n� k
fuzzy membership matrix W in a chromosome, where n is
the number of objects in the data set and k is the number
of clusters. That is, the length of a chromosome is n� k,
where the first k positions (or, genes) represent the k fuzzy
membership of the first data point, the next k positions rep-
resent those of the second data point, and so on. For
example, if n ¼ 4 and k ¼ 3, then the chromosome,
ða1; a2; . . . ; a12Þ, represents the following 3� 4 fuzzy mem-
bership matrix:

W ¼
a1 a4 a7 a10

a2 a5 a8 a11

a3 a6 a9 a12

0
B@

1
CA;

where W satisfies 1a, 1b and 1c. We call a chromosome rep-
resenting a fuzzy membership matrix which satisfies 1a, 1b
and 1c a legal chromosome.

3.2. Initialization process

In the initialization phase, a population of N legal chro-
mosomes is generated, where N is the size of the popula-
tion. To generate a chromosome ða1; a2; . . . ; an�kÞ, we
employ the method introduced by Zhao, Tsujimura, and
Gen (1996), which is described as follows:

for i ¼ 1 to n do
Generate k random numbers vi1; vi2; . . . ; vik from ½0; 1�
for the ith point of the chromosome;
Calculate aðj�1Þ�nþi ¼ vij=

Pk
l¼1vil for j ¼ 1; 2; . . . ; k;

end for
If the produced chromosome satisfies 1a, 1b and 1c, then
generate next chromosome, otherwise repeat the above
process.

The process described above is repeated N times to gen-
erate an initial population.

3.3. Selection process

To describe the selection process, let us first introduce
how to calculate the fitness of a chromosome. In our algo-
rithm, we use the well-known rank-based evaluation func-
tion, i.e.,

F ðsiÞ ¼ bð1� bÞri�1
; ð4Þ

where sið1 � i � NÞ is the ith chromosome in the popula-
tion, ri is the rank of si, and b 2 ½0; 1� is a parameter indi-
cating the selective pressure of the algorithm. Note that the
chromosome with rank 1 is the best one and the chromo-
some with rank N is the worst one.

In our algorithm, the selection process is based on
spinning the roulette wheel (Zhao et al., 1996) N times
and each time a chromosome is selected for the next pop-
ulation. Let P jð0 � j � NÞ be the cumulative probabilities
defined as

P j ¼
0 for j ¼ 0;Pj

i¼1
F ðsiÞPN

i¼1
F ðsiÞ

for j ¼ 1; 2; . . . ;N :

8<
:

Then the new population is generated as follows:

for i ¼ 1 to N do
Generate a random real number v from ½0; 1�;
if P j�1 < v < P j then

Select sj;
end if

end for

3.4. Crossover process

After the selection process, the population will go
through a crossover process. Similar to genetic k-Means
algorithm (Krishna & Narasimha, 1999), in our algorithm
we employ a one-step fuzzy k-Modes algorithm as the
crossover operator. Based on Theorems 1 and 2, we can
update each chromosome in the population as follows:

for t ¼ 1 to N do

Let W t be the fuzzy membership matrix represented
by st;
Obtain the new set of cluster centers Ẑt given W t

according to Theorem 1;
Obtain the fuzzy membership matrix Ŵ t given Ẑt

according to Theorem 2;
Replace st with the chromosome representing Ŵ t.

end for



1618 G. Gan et al. / Expert Systems with Applications 36 (2009) 1615–1620
3.5. Mutation process

In the mutation process, each gene has a small probabil-
ity P m (say 0.01) of mutating, decided by generating a ran-
dom number (the gene will mutate if the random number is
less than 0.01, otherwise not). In our algorithm, a change
of one gene of a chromosome will trigger a series of
changes of genes in order to satisfy 1b. Thus in the muta-
tion process, the fuzzy memberships of a point in a chro-
mosome will be selected to mutate together with
probability P m. The mutation process is described as
follows:

for t ¼ 1 to N do

Let ða1; a2; . . . ; an�kÞ denote the chromosome st;
for i ¼ 1 to n do

Generate a random real number v 2 ½0; 1�;
if v � P m then
Generate k random numbers vi1; vi2; . . . ; vik from
½0; 1� for the ith point of the chromosome;
Replace aðj�1Þ�nþi with vij=

Pk
l¼1vil for

j ¼ 1; 2; . . . ; k;
end if

end for

end for
3.6. Termination criterion

In our algorithm, the processes of selection, one-step
fuzzy k-Modes, mutation are executed for, Gmax, a maxi-
mum number of iterations (or, generations). The best chro-
mosome up to the last generation provides the solution to
the clustering problem. We also have implemented the elit-
ist strategy (Cowgill, Harvey, & Watson, 1999) at each gen-
eration by creating N � 1 children and retaining the best
parent of the current generation for the next generation.
4. Experiments

The genetic fuzzy k-Modes algorithm is coded in C++
programming language. Two data sets from UCI machine
learning repository (Blake & Merz, 1998) are used to test
the feasibility and effectiveness of our new algorithm. Our
experiments were conducted on a PC with 2.2 Hz CPU
and 512 M RAM and a Sun Blade 1000 workstation.
4.1. Clustering quality measures

The clustering result of the genetic fuzzy k-Modes algo-
rithm is a fuzzy membership matrix from which we obtain
the cluster memberships as follows. The object xi is
assigned to the rth cluster if

r ¼ arg max
1�l�k

wli; or wri ¼ max
1�l�k

wli:
In the case that the maximum is not unique, the object xi is
assigned to the cluster first archiving the maximum.

We used the corrected Rand index (Hubert & Arabie,
1985) to assess the recovery of the underlying cluster struc-
ture. Let P ¼ fC1;C2; . . . ;Ck1

g and P0 ¼ fC01;C02; . . . ;C0k2
g

be two clusterings of D. Denote by nij the number of points
simultaneously in Ci and C0j, i.e. nij ¼j Ci \ C0j j, then the
corrected Rand index is defined as

c¼

n

2

� �Pk1

i¼1

Pk2

j¼1

nij

2

� �
�
Pk1

i¼1

jCij
2

� �Pk2

j¼1

jC0jj
2

� �

1
2

n

2

� � Pk1

i¼1

jCij
2

� �
þ
Pk2

j¼1

jC0jj
2

� �� �
�
Pk1

i¼1

jCij
2

� �Pk2

j¼1

jC0jj
2

� � :

The corrected Rand index c ranges from 0 when the two
clusterings have no similarities (i.e. when one consists of
a single cluster containing the whole data set and the other
only clusters containing single points), to 1 when the two
clusterings are identical. Since we know the true clustering
of the data set, the true clustering and the resulting cluster-
ing are used to calculate c.
4.2. Data sets

Our first data set is the well-known soybean data set.
The soybean data set has 47 records each of which is
described by 35 attributes. Each record is labeled as one
of the four diseases: diaporthe stem rot, charcoal rot, rhi-
zoctonia root rot and phytophthora rot. Except for the
phytophthora rot which has 17 instances, all other diseases
have 10 instances each. Since there are 14 attributes that
have only one category, we only selected other 21 attributes
for the purpose of clustering.

Our second data set is the Congressional voting data set.
The Congressional voting data set includes votes for each
of the US House of Representatives Congressmen on the
16 key votes identified by the CQA. It has 435 objects
(267 democrats, 168 republicans) each of which is described
by 16 binary attributes. Some of the objects have missing
values, we denote the missing value by ‘‘?” and treat it as
an additional category for that attribute.
4.3. Results

For the soybean data set, we use the parameters with
following values: k ¼ 4, N ¼ 20, Gmax ¼ 15, a ¼ 1:2,
b ¼ 0:1 and P m ¼ 0:01. The results of the 100 runs are sum-
marized in Table 1. The first column is the best case of the
100 runs in terms of the objective function defined in Eq. 3.
The corresponding corrected Rand index c of the best case
is given in the third column of the table. The second col-
umn and the fourth column give the average objective func-
tion value F cðW ; ZÞ and the average corrected Rand index c
of the 100 runs, respectively. The fifth column is the num-
ber of correct clusterings of the 100 runs.

The best case has a corrected Rand index of 1, which
means that all objects are correctly clustered into the four



Table 1
The summary of 100 runs of the genetic fuzzy k-Modes algorithm on the
soybean data set

Best Average c for the best Average c # of runs c ¼ 1

193.832904 209.081562 1.000000 0.771319 24
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given clusters. The fuzzy membership of the best case is
given in Table 2. One can see from Table 2 that most of
the objects have a heavy membership for exact one cluster
and light memberships for other clusters. The object x10 has
a membership of 1 for one cluster and 0 for others, which
implies that x10 is the center of the cluster it belongs to. The
Table 2
The fuzzy membership of the best case of the 100 runs of the genetic fuzzy k-

Object w1i w2i w3i

x1 0.99949 0.00013 0.00032
x2 0.87185 0.01826 0.06780
x3 0.92638 0.00949 0.01940
x4 0.99596 0.00065 0.00242
x5 0.99376 0.00065 0.00409
x6 0.96755 0.00814 0.01215
x7 0.92278 0.01334 0.04455
x8 0.98832 0.00133 0.00407
x9 0.99543 0.00065 0.00242
x10 1.00000 0.00000 0.00000
x11 0.00065 0.99888 0.00023
x12 0.05951 0.88110 0.01950
x13 0.00020 0.99961 0.00013
x14 0.00408 0.99051 0.00134
x15 0.00065 0.99880 0.00032
x16 0.04194 0.92658 0.01097
x17 0.01009 0.98532 0.00188
x18 0.00065 0.99886 0.00032
x19 0.01880 0.96905 0.00399
x20 0.00065 0.99844 0.00045
x21 0.00627 0.00071 0.98674
x22 0.00150 0.00032 0.99409
x23 0.00242 0.00023 0.99637
x24 0.00032 0.00003 0.99933
x25 0.00150 0.00023 0.99585
x26 0.15242 0.03233 0.74914
x27 0.00150 0.00023 0.99585
x28 0.00150 0.00023 0.99585
x29 0.04068 0.01989 0.89874
x30 0.00241 0.00017 0.99333
x31 0.00402 0.00132 0.01695
x32 0.03696 0.01603 0.18163
x33 0.00065 0.00032 0.00242
x34 0.09868 0.01300 0.30116
x35 0.00096 0.00044 0.01423
x36 0.00009 0.00003 0.00020
x37 0.00557 0.00360 0.11530
x38 0.01128 0.00522 0.08563
x39 0.00188 0.00096 0.01011
x40 0.00559 0.00287 0.03005
x41 0.07594 0.02045 0.45181
x42 0.01801 0.00881 0.11324
x43 0.00006 0.00004 0.00032
x44 0.02868 0.00940 0.04431
x45 0.01398 0.00965 0.30884
x46 0.00976 0.00707 0.02979
x47 0.01532 0.00413 0.49028
objects x41 and x47 have two equal memberships for two
different clusters, so they can be assigned to either of the
two clusters.

We also tested the genetic k-Modes algorithm on the soy-
bean data set for different configurations of the parameters
a, b and P m. It seems that the parameter configuration,
a ¼ 1:2, b ¼ 0:1 and P m ¼ 0:01, gives better clustering
results than those produced by other configurations.

We specify k ¼ 2, N ¼ 20, Gmax ¼ 15, a ¼ 1:2, b ¼ 0:1
and P m ¼ 0:01 and run the algorithm 100 times on the Con-
gressional voting data sets. Table 3 summarizes the cluster-
ing results of the 100 runs. The meaning of each column in
Table 3 is the same as that in Table 1. We see from Table 3
Modes algorithm on the soybean data set

w4i First choice Second choice

0.00006 1 3
0.04210 1 3
0.04473 1 4
0.00097 1 3
0.00150 1 3
0.01215 1 4
0.01933 1 3
0.00628 1 4
0.00150 1 3
0.00000 1 4
0.00023 2 1
0.03988 2 1
0.00006 2 1
0.00408 2 4
0.00023 2 1
0.02051 2 1
0.00272 2 1
0.00017 2 1
0.00816 2 1
0.00045 2 1
0.00627 3 4
0.00409 3 4
0.00097 3 1
0.00032 3 4
0.00242 3 4
0.06611 3 1
0.00242 3 4
0.00242 3 4
0.04068 3 4
0.00409 3 4
0.97770 4 3
0.76539 4 3
0.99661 4 3
0.58716 4 3
0.98436 4 3
0.99968 4 3
0.87553 4 3
0.89788 4 3
0.98705 4 3
0.96150 4 3
0.45181 4 3
0.85994 4 3
0.99958 4 3
0.91762 4 3
0.66753 4 3
0.95337 4 3
0.49028 4 3



Table 3
The summary of 100 runs of the genetic fuzzy k-Modes algorithm on the
Congressional voting data set

Best Average c for the best Average c # of runs c ¼ 1

1659.401378 1663.201251 0.529821 0.506913 0

Table 4
The misclassification matrix of the best case of the 100 runs of the genetic
fuzzy k-Modes algorithm on the Congressional voting data set

Cluster 1 Cluster 2

Republican 153 15
Democrat 44 223

Table 5
The misclassification matrix of the best case of the 100 runs of the genetic
fuzzy k-Modes algorithm on the Congressional voting data set with k ¼ 4

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Republican 90 71 1 6
Democrat 18 24 86 139

Table 6
The misclassification matrix of the best case of the 100 runs of the genetic
fuzzy k-Modes algorithm on the Congressional voting data set with k ¼ 6

Cluster
1

Cluster
2

Cluster
3

Cluster
4

Cluster
5

Cluster
6

Republican 4 70 2 84 6 2
Democrat 41 9 65 5 24 123
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that the difference between the best case and the average
case is very small relative to the average, which indicates
the algorithm is stable. However, there is no such run of
the 100 runs that all the objects are correctly clustered into
the two given clusters.

Table 4 gives the misclassification matrix of the best case
of the 100 runs. We see from this table that only 59 out of
435 objects are misclassified. We also run the algorithm on
the Congressional voting data set 100 times with k ¼ 4 and
other parameters kept the same. The misclassification
matrix of the best case of the 100 runs is given in Table
5. We see from Table 5 that only 18þ 24þ 1þ 6 ¼ 49
out of 435 objects are misclassified. Table 6 gives the mis-
classification matrix of 100 runs of the algorithm on the
Congressional data set with k ¼ 6 and other parameters
kept the same. In this case, only 4þ 9þ 2þ 5þ 6þ 2 ¼
28 out of 435 objects are misclassified.

From these experimental results of the algorithm on the
Congressional data set, we observed the following interest-
ing fact: when we increase k in the algorithm, the number
of objects that are clustered incorrectly decreases. Consider
the Congressional data set, for example, we specified
k ¼ 2; 4; 6 and observed that the numbers of misclassified
objects 59; 49; 28, respectively.
5. Conclusions

In this paper we presented the genetic fuzzy k-Modes
algorithm for clustering categorical data sets. We treated
the fuzzy k-Modes clustering as an optimization problem
and used GAs to solve the problem in order to obtain glob-
ally optimal solution. To speed up the convergence process
of the algorithm, we used the one-step fuzzy k-Modes algo-
rithm in the crossover process instead of the traditional
crossover operator. We tested the algorithm using two real
world data sets from UCI Machine Learning Repository
(Blake & Merz, 1998) and the experimental results have
shown that genetic fuzzy k-Modes is very effective in iden-
tifying the inherent cluster structures in categorical data set
if such structures exist.
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