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A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
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Abstract

We establish the convergence of the fuzzy subspace clustering (FSC) algorithm by applying Zangwill’s convergence theorem. We show that
the iteration sequence produced by the FSC algorithm terminates at a point in the solution set S or there is a subsequence converging to a
point in S. In addition, we present experimental results that illustrate the convergence properties of the FSC algorithm in various scenarios.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Data clustering is an unsupervised process that divides a
given data set into groups or clusters such that the points within
the same cluster are more similar than points across differ-
ent clusters [1–3]. The difficulty that conventional clustering
algorithms encounter in dealing with high dimensional data
sets gives rise to the invention of subspace clustering algo-
rithms or projected clustering algorithms [4] whose goal is to
find clusters embedded in subspaces of the original data space
with their own associated dimensions. However, almost all of
the subspace clustering algorithms give non-zero weights to
cluster dimensions uniformly and zero weights to non-cluster
dimensions.

Motivated by fuzzy clustering [5–7] and LAC [8], Gan et al.
[9] proposed a fuzzy subspace clustering (FSC) algorithm to
cluster high dimensional data sets. FSC finds regular subspace
clusters with each dimension of the original data being associ-
ated with each cluster with a probability or weight. The higher
the density of a cluster in a dimension, the more the weight
that will be assigned to that dimension. In other words, all di-
mensions of the original data are associated with each cluster,
but they have different degrees of association with that cluster.
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Numerical examples of the FSC algorithm given in Ref. [9] sug-
gest empirically that the algorithm is at least locally convergent,
but no proof of convergence was provided therein. Motivated by
the proof of the convergence of the fuzzy c-Means/ISODATA
algorithm [10–12], in this paper we develop a convergence the-
orem, using the Zangwill’s convergence theorem, for the FSC
algorithm.

2. The FSC algorithm

To describe the FSC algorithm, we start with some notation.
Let D = {x1, x2, . . . , xn} be a finite data set in the Euclidean
spaceRd ; let k be an integer 2�k < n; and let Vkn(Bkn) denote
the vector space of all real (binary) k × n matrices. A hard
k-partition of D can be represented by a binary k × n matrix
U = (uji) which satisfies

uji ∈ {0, 1}, 1�j �k, 1� i�n, (1a)

k∑
j=1

uji = 1, 1� i�n, (1b)

n∑
i=1

uji > 0, 1�j �k. (1c)

The set of all hard k-partitions of D is denoted by Mk , i.e.,

Mk = {U ∈ Bkn|U satisfies constraint (1)}. (2)
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A k × d matrix W = (wjh) is said to be a fuzzy dimension
weight matrix if W satisfies the following conditions:

0�wjh �1, 1�j �k, 1�h�d , (3a)

d∑
h=1

wjh = 1, 1�j �k. (3b)

The set of all such fuzzy dimension weight matrices is denoted
by Mf k , i.e.

Mf k = {W ∈ Vkd |W satisfies constraint (3)}. (4)

The component wjh specifies the probability of the dimension
h belonging to the set of cluster dimensions of the cluster j.

Now let Z={z1, z2, . . . , zk} ⊂ Rd be a set of k centers. Then
the objective function of the FSC algorithm is defined as [9]

E�,�(W, Z, U) = �
k∑

j=1

d∑
h=1

w�
jh +

k∑
j=1

n∑
i=1

uji

×
d∑

h=1

w�
jh(xih − zjh)

2, (5)

where W, Z and U are the fuzzy dimension weight matrix, the
center and the hard k-partition of D, respectively, � ∈ (1, ∞) is
a weight component or fuzzifier, and � is a very small positive
real number. Note that any one of W, Z and U can be determined
from the other two.

It will be shown later that (W ∗, Z∗, U∗) is a local minimum
of E�,� if and only if, for any � > 1 and � > 0, there holds

w∗
jh = 1

∑d
l=1

[∑n
i=1u

∗
ji(xih − z∗

jh)
2 + �∑n

i=1u
∗
ji(xil − z∗

j l)
2 + �

]1/(�−1)
(6a)

for 1�j �k and 1�h�d ,

z∗
jh =

∑n
i=1u

∗
jixih∑n

i=1u
∗
ji

(6b)

for 1�j �k and 1�h�d and

u∗
ji = 1 for some j ∈

{
r ∈ Q|r = arg min

1� l �k
dli

}
(6c)

for 1�j �k and 1� i�n, where Q = {1, 2, . . . , k} and dli =∑d
h=1(w

∗
lh)

�(xih − z∗
lh)

2. The FSC algorithm is a Picard itera-
tion through the loop defined by Eq. (6).

Algorithm 1. The pseudo-code of the FSC algorithm.
Require: D—the data set, k—the number of clusters and
�—the fuzzifier
1: Initialize Z by choosing k points from D randomly;
2: Initialize W with wjh = 1

d
(1�j �k, 1�h�d);

3: Estimate U from initial values of W and Z according to
Eq. (6c);

4: Let error = 1 and Obj = E�,�(W, Z);
5: while error > 0 do
6: Update Z according to Eq. (6b);
7: Update W according to Eq. (6a);
8: Update U according to Eq. (6c);
9: Calculate NewObj = E�,�(W, Z);
10: Let error = |NewObj − Obj |, and then Obj ⇐

NewObj ;
11: endwhile
12: Output W, Z and U.

The FSC algorithm is implemented recursively (see
Algorithm 1). FSC starts with initial estimates of Z, W and the
partition U calculated from Z and W, and then repeats estimat-
ing the centers Z given the estimates of W and U, estimating
the fuzzy dimension weight matrix W given the estimates of Z
and U, and estimating the partition U given the estimates of W
and Z until it converges.

FSC requires two parameters: the number of clusters k and
the fuzzifier �. Choosing an appropriate k is a challenging prob-
lem in data clustering and there are no widely accepted methods
[13,14]. In fuzzy clustering, the fuzzifier � is usually specified to
be around 1.1 [15]. In our algorithm we desire such an � that the
resulting weights of cluster dimensions are large and the result-
ing weights of non-cluster dimensions are small or close to zero.
Suppose we have a cluster with small identical variances in first
three dimensions. If we choose � close to 1, then we cannot dif-
ferentiate between weights (1, 0, . . . , 0) and ( 1

3 , 1
3 , 1

3 , 0, . . . , 0)

for this cluster, since 1+0+· · ·+0= 1
3 + 1

3 + 1
3 +0+· · ·+0. Re-

garding the specification of �, we suggest a value around 2. If
we specify �=2, then 12+02+· · ·+02=1 > 1

9 + 1
9 + 1

9 +0+· · ·+
0 = 1

3 .
The computational cost of the FSC algorithm per it-

eration (of the while loop) can be decomposed into four
parts:

(1) The time required to update Z is O(nd).
(2) The time required to update W is O(nkd).
(3) The time required to update U is O(nkd).
(4) The time required to calculate the objective function is

O((n + 1)kd).

The number of iterations required for the FSC algorithm to
converge depends on the size of data, the number of clusters,
initial centers, � and �. Since the computational cost per iteration
is linear to dimension d, the FSC algorithm is well suited for
clustering high dimensional data.

3. Zangwill’s convergence theorem

Zangwill’s results are very useful to establish the conver-
gence properties of iterative algorithms. Before introducing
Zangwill’s convergence theorem A [16,10], we first recall some
concepts.
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Definition 1. A point-to-set map � from a set X into a set Y is
defined as

� : X → P(Y ),

which associates a subset of Y with each point of X, where
P(Y ) denotes the power set of Y.

Definition 2. A point-to-set map � : X → P(Y ) is said to be
open at a point x̄ in X if {x(m)} ⊂ X, x(m) → x̄ and ȳ ∈ �(x̄)

imply the existence of an integer m0 and a sequence {y(m)} ⊂ Y

such that y(m) ∈ �(x(m)) for m�m0 and y(m) → ȳ.

Definition 3. A point-to-set map � : X → P(Y ) is said to
be closed at a point x̄ in X if {x(m)} ⊂ X, x(m) → x̄, y(m) ∈
�(x(m)) and y(m) → ȳ imply that ȳ ∈ �(x̄).

Definition 4. A point-to-set map � : X → P(Y ) is said to be
continuous at a point x̄ in X if it is both open and closed at x̄.

Regarding the composite of a function and a point-to-set
map, we have the following property [10].

Corollary 5. Let C : M → V be a function and � : V →
P(V ) be a point-to-set map. If C is continuous at w0 and � is
closed at C(w0), then the point-to-set map �◦C : M → P(V )

is closed at w0.

Now we are ready to introduce Zangwill’s convergence
theorem A [10,16].

Theorem 6 (Zangwill’s convergence theorem A). Given a point
z(0) ∈ V , let the point-to-set map � : V → P(V ) determine an
algorithm that generates the sequence {z(m)}. Also a solution
set S ⊂ V is given. Assume that

(1) All points z(m) are in a compact subset of V.
(2) There is a continuous function J : V → R such that:

(a) If z /∈ S, then for any y ∈ �(z), J (y) < J (z).
(b) If z ∈ S, then either the algorithm terminates or for

any y ∈ �(z), J (y)�J (z).
(3) The map � is closed at z if z /∈ S.

Then either the algorithm stops at a solution or the limit of any
convergent subsequence is a solution.

Obviously, the most difficult part of applying Zangwill’s con-
vergence theorem is to find the appropriate solution set S.

4. Convergence of FSC

To establish the convergence properties of FSC by applying
Zangwill’s convergence theorem, we need some additional no-
tation and propositions.

Let G1 : Mf k × Mk → Rkd be a function defined as

G1(W, U) = Z = (z1, z2, . . . , zk)
T, (7)

where the vectors zj =(zj1, zj2, . . . , zjd)T ∈ Rd , 1�j �k, are
computed via Eq. (6b) using W and U. Let G2 : Rkd × Mk →
Mf k be a function defined as

G2(Z, U) = W = (w1, w2, . . . , wk)
T, (8)

where the vectors wj = (wj1, wj2, . . . , wjd)T, j = 1, 2, . . . , k,
are calculated via Eq. (6a). Let G3 : Mf k ×Rkd → P(Mk) be
a point-to-set map

G3(W, Z) = {U ∈ Mk|U satisfies Eq. (6c)}. (9)

Similar to the fuzzy c-means iteration [11], the FSC iteration
can be expressed using a point-to-set map T�,� : Mf k ×Rkd ×
Mk → P(Mf k ×Rkd × Mk) defined by the composition

T�,� = A3 ◦ A2 ◦ A1, (10)

where A1 : Mf k ×Rkd ×Mk → Rkd ×Mk , A2 : Rkd ×Mk →
Mf k ×Rkd and A3 : Mf k ×Rkd → P(Mf k ×Rkd × Mk) are
defined as

A1(W, Z, U) = (G1(W, U), U), (11a)

A2(Z, U) = (G2(Z, U), Z), (11b)

A3(W, Z) = {(W, Z, U)|U ∈ G3(W, Z)}. (11c)

Thus T�,�(W, Z, U) = {(Ŵ , Ẑ, Û )|Ẑ = G1(W, U), Ŵ =
G2(Ẑ, U), and Û ∈ G3(Ŵ , Ẑ)}, i.e.,

(Ŵ , Ẑ, Û ) ∈ T�,�(W, Z, U)

= A3 ◦ A2 ◦ A1(W, Z, U)

= A3 ◦ A2(G1(W, U), U)

= A3 ◦ (G2(Ẑ, U), G1(W, U))

= {(W, Z, U)|U ∈ G3(G2(Ẑ, U), G1(W, U))}
= {(W, Z, U)|U ∈ G3(Ŵ , Ẑ)}.

Now we define an FSC iteration sequence as follows.

Definition 7. A sequence {(W(m), Z(m), U(m))} is said to be an
FSC iteration sequence if (W(1), Z(1), U(1)) ∈ Mf k×Rkd×Mk

and (W(m), Z(m), U(m)) ∈ T�,�(W
(m−1), Z(m−1), U(m−1)) for

m = 2, 3, . . . .

Now we present some propositions. The proofs of these
propositions are given in Appendix A.

Proposition 8. Let D = {x1, x2, . . . , xn} and let � : Mk → R

be defined as �(U) = E�,�(W
∗, Z∗, U), where W ∗ ∈ Mf k ,

Z∗ ∈ Rkd , � > 1 and � > 0 are fixed. Suppose that there exists k
different integers i1, i2, . . . , ik (1� i1, i2, . . . , ik �n) such that

djij < dji, ∀i 
= ij , (12)
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where

dji =
d∑

h=1

(w∗
jh)

�(xih − z∗
jh)

2,

i = 1, 2, . . . , n, j = 1, 2, . . . , k. (13)

Then the set of global minimizers of � over Mk is precisely the
subset of Mk satisfying Eq. (6c).

Proposition 9. Let D = {x1, x2, . . . , xn} and let � : Mf k →
R be defined as �(W) = E�,�(W, Z∗, U∗), where Z∗ ∈ Rkd ,
U∗ ∈ Mk and � > 1 are fixed. Then W is a global minimizer of
� over Mf k if and only if W is calculated via Eq. (6a).

Proposition 10. Let � : Rkd → R be defined as �(Z) =
E�,�(W

∗, Z, U∗), where W ∗ ∈ Mf k , U∗ ∈ Mk and � > 1 are
fixed. Then Z is a global minimizer of � over Rkd if and only
if Z satisfies Eq. (6b) for W ∗.

Theorem 11. Let � > 1 be fixed and D ={x1, x2, . . . , xn} con-
tain at least k(< n) distinct points. Let the solution set S of the
optimization problem

min
(W,Z,U)∈Mf k×Rkd×Mk

E�,�(W, Z, U)

be defined as

S = {(W̄ , Z̄, Ū ) ∈ Mf k ×Rkd × Mk|
E�,�(W̄ , Z̄, Ū )�E�,�(W̄ , Z̄, U) ∀U ∈ Mk and

E�,�(W̄ , Z̄, Ū ) < E�,�(W, Z̄, Ū) ∀W 
= W̄ and

E�,�(W̄ , Z̄, Ū ) < E�,�(W̄ , Z, Ū) ∀Z 
= Z̄}. (14)

Let (W̄ , Z̄, Ū ) ∈ Mf k × Rkd × Mk . Then E�,�(Ŵ , Ẑ, Û )�
E�,�(W̄ , Z̄, Ū ) for every (Ŵ , Ẑ, Û ) ∈ T�,�(W̄ , Z̄, Ū ) and the
inequality is strict if (W̄ , Z̄, Ū ) /∈ S.

Proof. Let (Ŵ , Ẑ, Û ) ∈ T�,�(W̄ , Z̄, Ū ), then (Ŵ , Ẑ, Û ) ∈
A3 ◦ A2 ◦ A1(W̄ , Z̄, Ū ), where A1, A2 and A3 are defined in
Eq. (11). From the definitions of A1, A2 and A3, and Proposi-
tions 8, 9 and 10, it follows that (Ŵ , Ẑ, Û ) ∈ Mf k ×Rkd ×Mk

and

E�,�(W̄ , Z̄, Ū )�E�,�(W̄ , Ẑ, Ū )�E�,�(Ŵ , Ẑ, Ū )

�E�,�(Ŵ , Ẑ, Û ), (15)

which implies

E�,�(Ŵ , Ẑ, Û )�E�,�(W̄ , Z̄, Ū ).

We now show that E�,�(Ŵ , Ẑ, Û ) < E�,�(W̄ , Z̄, Ū ) if
(W̄ , Z̄, Ū ) /∈ S. To do this, we only need to show that
E�,�(Ŵ , Ẑ, Û ) 
= E�,�(W̄ , Z̄, Ū ) if (W̄ , Z̄, Ū ) /∈ S. Using
a proof by contradiction, we assume that E�,�(Ŵ , Ẑ, Û ) =
E�,�(W̄ , Z̄, Ū ) for some (W̄ , Z̄, Ū ) /∈ S. Then, from Eq. (15)
we have

E�,�(W̄ , Z̄, Ū )=E�,�(W̄ , Ẑ, Ū )=E�,�(Ŵ , Ẑ, Ū )=E�,�(Ŵ , Ẑ, Û ).
(16)

From Proposition 10, we know that Ẑ=G1(W̄ , Ū) is the global
minimizer of the function E�,�(W̄ , Z, Ū). From Eq. (16), we
have E�,�(W̄ , Z̄, Ū )=E�,�(W̄ , Ẑ, Ū ), which implies Z̄ is also
the global minimizer of the same function E�,�(W̄ , Z, Ū). Not-
ing that the function has a unique global minimizer, we have
Z̄ = Ẑ. Similarly, we have W̄ = Ŵ .

Since (W̄ , Z̄, Ū ) /∈ S, from the definition of S we have the
following three cases: (a) E�,�(W̄ , Z̄, Ū ) > E�,�(W̄ , Z̄, U∗)
for some U∗ ∈ Mk; or (b) E�,�(W̄ , Z̄, Ū )�E�,�(W̄ , Z∗, Ū )

for some Z∗ 
= Z̄; or (c) E�,�(W̄ , Z̄, Ū )�E�,�(W
∗, Z̄, Ū )for

some W ∗ 
= W̄ .
In Case (a), noting that Z̄ = Ẑ and W̄ =Ŵ , from Proposition

8 we have

E�,�(W̄ , Z̄, Ū ) > E�,�(W̄ , Z̄, U∗)
= E�,�(Ŵ , Ẑ, U∗)�E�,�(Ŵ , Ẑ, Û ),

which contradicts our assumption.
In Case (b), noting that Z̄ 
= Z∗ and Ẑ=Z̄, from Proposition

10 and Eq. (16) we have

E�,�(W̄ , Z̄, Ū )�E�,�(W̄ , Z∗, Ū )>E�,�(W̄ , Ẑ, Ū )=E�,�(Ŵ , Ẑ, Û ),

which contradicts our assumption.
In Case (c), noting that Z̄ = Ẑ, W̄ = Ŵ and W ∗ 
= W̄ , from

Proposition 9 and Eq. (16) we have

E�,�(W̄ , Z̄, Ū )�E�,�(W
∗, Z̄, Ū ) = E�,�(W

∗, Ẑ, Ū )

> E�,�(Ŵ , Ẑ, Ū ) = E�,�(Ŵ , Ẑ, Û ),

which contradicts our assumption again. This proves the
theorem. �

Theorem 12. Let � > 1 be fixed and D ={x1, x2, . . . , xn} con-
tain at least k(< n) distinct points. Then the point-to-set map
T�,� : Mf k ×Rkd × Mk → P(Mf k ×Rkd × Mk) is closed at
every point in Mf k ×Rkd × Mk .

Theorem 13. Let D ={x1, x2, . . . , xn} contain at least k(< n)

distinct points, and let (W(0), Z(0), U(0)) be the starting point
of iteration with T�,� with W(0) ∈ Mf k , Z(0) ∈ Rkd and
U(0) ∈ G3(W

(0), Z(0)). Then the iteration sequence {(W(r),
Z(r), U(r))}, r =1, 2, . . . , is contained in a compact subset of
Mf k ×Rkd × Mk .

Since the function E�,�(W, Z, U) defined in Eq. (5) is
continuous, the following theorem, which establishes the con-
vergence for the FSC algorithm, follows immediately from
Theorems 13, 11, 12 and Zangwill’s convergence Theorem 6.

Theorem 14 (Convergence of FSC). Let D = {x1, x2, . . . , xn}
contain at least k(< n) distinct points, and let E�,�(W, Z, U)

defined as in Eq. (5). Let (W(0), Z(0), U(0)) be the starting
point of iteration with T�,�, with W(0) ∈ Mf k , Z(0) ∈ Rkd

and U(0) ∈ G3(W
(0), Z(0)). Then the iteration sequence

{(W(r), Z(r), U(r))}, r = 1, 2, . . . , either terminates at a point
(W ∗, Z∗, U∗) in the solution set S; or there is a subsequence
converging to a point in S.
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5. Numerical evaluation of FSC

In this section, we present experimental results that illustrate
the convergence properties of the FSC algorithm in various
scenarios. For experimental results that illustrate the clustering
accuracy of the FSC algorithm, readers are referred to Refs.
[9,17]. The FSC algorithm was implemented in C + + and
the C + + code was compiled using the default compiler of
Dev-C++. Our experiments were conducted on an Acer Aspire
5502ZWXMi laptop having an Intel Pentium M processor 735
(1.7 GHz, 400 MHz FSB, 2MB L2 cache), with 512 MB DDR2
RAM, using the Windows XP operating system.

5.1. Synthetic data generation

To generate synthetic data, we use the data generation method
introduced in Ref. [18] which uses the so-called anchor points to
generate clusters embedded in subspaces of a high dimensional
space. To generate k clusters embedded in different subspaces
of different dimensions, the method proceeds by first generat-
ing k uniformly distributed anchor points c1, c2, . . . , ck in the
d-dimensional space. The method then generates the number
of dimensions and the number of points associated with each
cluster. Finally, it generates points for each cluster and outliers.

The number of dimensions associated with a cluster is gen-
erated by a Poison process with mean �, with the additional
restriction that this number is in [2, d]. The dimensions for the
first cluster are chosen randomly. Once the dimensions for the
(i−1)th cluster are chosen, the dimensions for the ith cluster are
generated inductively by choosing min{di−1, di/2} dimensions
from the (i −1)th cluster and generating other dimensions ran-
domly, where di is the number of dimensions for the ith cluster.
Given the percentage of outliers Foutlier and the size of the data
set n, the number of points in the ith cluster is Nc · ri/∑k

j=1 rj ,
where r1, r2, . . . , rk are generated randomly from an exponen-
tial distribution with mean 1, and Nc = n(1 − Foutlier ).

Table 1
The input clusters and their cluster dimensions for the data set A

Input Dimensions Points

A 2, 8, 20, 24, 29, 33, 39, 47, 51, 52, 53, 60, 67, 72, 80, 84, 92, 95, 99 2327
B 4, 8, 9, 20, 21, 24, 25, 28, 36, 41, 48, 52, 53, 67, 72, 80, 84, 86, 87, 92, 93, 95 4658
C 2, 9, 11, 18, 25, 41, 42, 48, 52, 57, 67, 68, 72, 92, 95, 97, 98 420
D 2, 14, 18, 33, 41, 44, 47, 52, 53, 72, 89, 93, 95, 98 845
E 2, 7, 11, 12, 14, 18, 23, 27, 33, 41, 44, 47, 53, 65, 67, 69, 72, 86, 89, 98, 99 1750

Table 2
The input clusters and their cluster dimensions for the data set B

Input Dimensions Points

A 2, 5, 12, 16, 21, 27, 32, 41, 44, 57, 74, 94 2888
B 1, 2, 7, 9, 12, 13, 21, 27, 33, 40, 41, 44, 58, 74, 94, 95, 100 3147
C 2, 9, 10, 16, 20, 21, 33, 36, 40, 41, 44, 52, 75, 94, 95 1200
D 2, 7, 9, 10, 15, 20, 33, 40, 42, 44, 53, 79, 82, 95, 98, 99, 100 2051
E 2, 7, 19, 28, 33, 37, 40, 42, 53, 69, 70, 80, 83, 97, 100 214
Outlier 500

In the final step, points in each cluster and outliers are gener-
ated as follows. For the ith cluster, the coordinates of the points
in non-cluster dimensions are generated uniformly at random
from [0, 100], while the coordinates of the points in a cluster
dimension j are generated by a normal distribution with mean
at the respective coordinate of the anchor point and variance
(sij r)

2, where sij is a scale factor generated uniformly at ran-
dom from [1, s] and r is a fixed spread parameter. Outliers are
generated uniformly at random from the entire space [0, 100]d .
In our experiments, we specify r = s = 2 in our synthetic data
generation.

Our first high dimensional data set A contains 10,000 100-
dimensional points with five clusters embedded in different
subspaces of different dimensions. No outliers are introduced
in this data set. Table 1 summarizes the clusters and their cor-
responding cluster dimensions.

Our second high dimensional data set B has 10,000 100-
dimensional points with five clusters embedded in different
subspaces of different dimensions and contains 500 outliers.
Table 2 summarizes the clusters and their corresponding cluster
dimensions.

5.2. Rate of convergence

The rate of convergence of the FSC algorithm depends on
many factors: initial centers, the number of clusters k, the fuzzi-
fier � and �. Since initial centers were chosen from the original
data set randomly, we run the FSC algorithm several times on
the data sets A and B with different values of k, � and � in order
to gain insight into the relationship between the rate of con-
vergence and the values of k, � and 	. The results are given in
Table 3.

In Table 3, the top sections give the average time and the
average number of iterations of FSC for different �’s with
fixed k and �, the middle sections give the average time and the
average number of iterations of FSC for different �’s with fixed
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Table 3
The rate of convergence of FSC on the data sets A and B

k � � A B

T̄ Ī T̄ Ī

5 1.1 0 179.53 42.0 138.26 32.0
5 1.6 0 142.7 32.8 100.25 22.9
5 2.1 0 88.01 19.8 61.68 13.9
5 2.6 0 89.08 20.4 42.27 9.3
5 3.1 0 120.61 28.0 41.44 9.1
5 3.6 0 127.8 28.2 70.08 15.4

5 2.1 1 85.8 18.6 93.76 16.7
5 2.1 5 50.7 11.2 104.56 17.3
5 2.1 25 55.02 12.1 123.3 20.2

3 2.1 0 30.38 9.3 25.88 6.3
4 2.1 0 27.77 6.9 34.44 6.9
6 2.1 0 123.35 24.9 101.43 16.0
7 2.1 0 197.71 35.1 160.3 22.8

T̄ and Ī denote average time (in seconds) and average number of iterations
of 10 runs of FSC, respectively.

k and �, and the bottom sections give the average time and
the average number of iterations of FSC for different k’s with
fixed � and �. From Table 3, we see that, with k and � fixed,
FSC converges faster for �’s between 2 and 3 than for other
�’s. When � and � are fixed, FSC converges fast for small k’s.
The effect of � on the rate of convergence is inconclusive. In
addition, the results in Table 3 show that the effect of outliers
on the rate of convergence depends on the parameter �. When
� > 0, FSC converges faster on the data set A, which has no
outliers, than on the data set B, which has outliers. When �=0,
FSC, in general, converges faster on the data set B than on the
data set A. In summary, the numerical results show that the FSC
algorithm converges in from several to 100 iterations and thus
is a scalable algorithm.

6. Conclusions

Subspace clustering algorithms are efficient to deal with
high dimensional data sets. The establishment of a subspace
clustering algorithm’s convergence is very important. In this
paper, we showed that the FSC algorithm converges by apply-
ing Zangwill’s convergence theorem A. Zhangwill’s theorem is
a very useful tool to establish the convergence of an iterative
algorithm. For example, Zhangwill’s theorem is also used to
show that the generalized alternating minimization (GAM) al-
gorithm, an algorithm based on the EM algorithm [19,20], is
convergent [21].

In addition to establishing the convergence theoretically,
we presented experimental results that illustrate the con-
vergence properties of the FSC algorithm. We did not give
an analytic formula that describes the relation between the
rate of convergence of the FSC algorithm and various fac-
tors. However, we presented experimental results which show
that the FSC algorithm converges in from several to 100
iterations.
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Appendix A. Proofs

In this appendix, we give the proofs of the various results
presented in the body of this paper.

A.1. Proof of Proposition 8

Proof. To prove this proposition, we first ignore the condition
in Eq. (1c), then we will show that the resulting U satisfies
Eq. (1c). We rearrange �(U) as

�(U) =
n∑

i=1

k∑
j=1

ujidji + �
k∑

j=1

d∑
h=1

(w∗
jh)

�.

Note that vectors ui = (u1i , u2i , . . . , uki)
T (i =1, 2, . . . , n) are

mutually uncorrelated and �
∑k

j=1
∑d

h=1(w
∗
jh)

� is fixed, there-

fore �(U) is minimized if and only if


i =
k∑

j=1

ujidji

is minimized for i = 1, 2, . . . , n.
On the one hand, if U ∈ Mk satisfies Eq. (6c), then it is clear

that 
i is minimized for all 1� i�n.
On the other hand, if 
i (1� i�n) is minimized, we claim

that

uji = 1 implies j ∈
{
r ∈ {1, 2, . . . , k}|r = arg min

1� l �k
dli

}

for all 1� i�n. In fact, if this is not true, then there exists an
1� i0 �n and a 1�j0 �k such that uj0i0 = 1 and

dj0i0 > min
1� l �k

dli0 ,

which contradicts the assumption that 
i0 is minimized. From
Eq. (12), we have

n∑
i=1

uji �ujij = 1 > 0, j = 1, 2, . . . , k,

which shows that U satisfies Eq. (1c). This proves the
theorem. �

A.2. Proof of Proposition 9

Lemma 15. Let Mf 1 be a set defined as

Mf 1 =
{

w ∈ Rd |wh ∈ [0, 1],
d∑

h=1

wh = 1

}
. (A.1)

Then Mf 1 is convex.
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Lemma 16. Let c1, c2, . . . , cd be positive real numbers. Then

d∑
h=1

chw
�
h

is strictly convex over Mf 1 for � > 1, where Mf 1 is defined in
Eq. (A.1).

Lemma 17. Let c1, c2, . . . , cd be d positive real numbers,
� > 1, and Mf 1 be defined as in Eq. (A.1). Let the function
� : Mf 1 → R be defined as

�(w) =
d∑

h=1

chw
�
h,

where wh is the hth component of w. Then w∗ is a strict local
minimum of � if and only if w∗ is calculated as

w∗
h = 1∑d

l=1

[
ch

cl

]1/(�−1)
, 1�h�d . (A.2)

Proof. We rearrange the objective function in Eq. (5) as
follows:

�(W) =
k∑

j=1

d∑
h=1

w�
jh

(
n∑

i=1

u∗
ji(xih − z∗

jh)
2 + �

)
. (A.3)

Since wj =(wj1, wj2, . . . , wjd)T are mutually uncorrelated for
j = 1, 2, . . . , k, E�,�(W, Z∗) is minimized if and only if

�j =
d∑

h=1

w�
jh

(
n∑

i=1

u∗
ji(xih − z∗

jh)
2 + �

)
=

d∑
h=1

cjhw
�
jh (A.4)

is minimized for every j = 1, 2, . . . , k, where

cjh =
n∑

i=1

u∗
ji(xih − z∗

jh)
2 + �.

Note that the coefficients cjhs of �j in Eq. (A.4) are all positive.
According to Lemma 16, �j is strictly convex for � > 1 and,
therefore has at most one minimizer, which is necessarily the
global minimizer. From Lemma 17 it follows that minimizer
exists and satisfies Eq. (6a). �

A.3. Proof of Proposition 10

Lemma 18. Let c1, c2, . . . , cr be real numbers, then the func-
tion � : R → R defined as

�(z) =
r∑

i=1

(xi − z)2

is strictly convex and z∗ is a global minimizer of � over R if
and only if z∗ satisfies

z∗ = 1

r

r∑
i=1

xi .

Proof. We rearrange �(Z) as

�(Z) =
k∑

j=1

d∑
h=1

n∑
i=1

u∗
ji(w

∗
jh)

�(xih−zjh)
2 + �

k∑
j=1

d∑
h=1

(w∗
jh)

�

=
k∑

j=1

d∑
h=1

(w∗
jh)

��jh + �
k∑

j=1

d∑
h=1

(w∗
jh)

�,

where

�jh =
n∑

i=1

u∗
ji(xih − zjh)

2.

Clearly, �(Z) is minimized if and only if each �jh is minimized
for j = 1, 2, . . . , k and h = 1, 2, . . . , d. For each �jh, from
Lemma 18 we know that �jh has a global minimizer and zjh

is a global minimizer of �jh if and only if zjh is calculated as

zjh =
∑n

i=1u
∗
jixih∑n

i=1u
∗
ji

.

This proves the theorem. �

A.4. Proof of Theorem 12

To prove Theorem 12, we first prove several lemmas.

Lemma 19. The function A1 : Mf k ×Rkd ×Mk → Rkd ×Mk

defined in Eq. (11a) is continuous at every point in Mf k ×
Rkd × Mk .

Proof. To prove A1 = (G1(W, U), U) is continuous, it suffices
to show that G1(W, U) is continuous. Note that G1 is a vector
field; let

G1 = (G11, G12, . . . , Gkd) : Mf k × Mk → Rkd ,

where Gjh : Mf k × Mk → R is defined via Eq. (6b) as

Gjh(W, U) =
∑n

i=1ujixih∑n
i=1uji

, 1�j �k, 1�h�d.

Now (wjh, uji) → ujixih is continuous and the sum of
continuous functions is continuous, thus Gjh is the quotient
of two continuous scalar fields for all 1�j �k and 1�h�d.
According to constraint (1c), Gjh never vanishes, so Gjh is
also continuous for all 1�j �k and 1�h�d. Therefore, G1
is continuous. This proves the lemma. �

Lemma 20. The function A2 : Rkd × Mk → Mf k × Rkd

defined in Eq. (11b) is continuous at every point in Rkd × Mk .

Proof. Since A2 = (G2(Z, U), Z), it suffices to prove that G2
is a continuous function. Note that G2 is a vector field with the
resolution by k × d scalar fields,

G2 = (F11, F12, . . . , Fkd) : Rkd × Mk → Rkd ,
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where Fjh : Rkd × Mk → R is defined via Eq. (6a) as

Fjh(Z, U) = 1

∑d
l=1

[∑n
i=1uji(xih − zjh)

2 + �∑n
i=1uji(xil − zjl)

2 + �

]1/(�−1)
,

for 1�h�d. Since (zjh, uji) → uji(xih − zjh)
2 is con-

tinuous for all 1�j �k and 1�h�d and the sum of two
continuous functions is continuous,

∑n
i=1 uji(xih − zjh)

2 is
continuous. Since

∑n
i=1 uji(xih−zjh)

2 +� > 0 for all 1�j �k

and 1�h�d, we know that the quotient∑n
i=1uji(xih − zjh)

2 + �∑n
i=1uji(xil − zjl)

2 + �

is continuous. Since � > 1,∑n
i=1uji(xih−zjh)

2+�∑n
i=1uji(xil−zjl)

2+�
→
[∑n

i=1uji(xih−zjh)
2+�∑n

i=1uji(xil−zjl)
2+�

]1/(�−1)

is continuous. Thus G2 is continuous. This proves the
lemma. �

Lemma 21. The function A3 : Mf k ×Rkd → P(Mf k ×Rkd ×
Mk) defined in Eq. (11c) is closed on Mf k ×Rkd × Mk .

Proof. Since A3 = {(W, Z, U) ∈ Mf k × Rkd × Mk|U ∈
G3(W, Z)}, it suffices to show that G3 is a closed point-to-set
mapping. To do this, let

(W(r), Z(r)) → (W̄ , Z̄) as r → ∞, (A.5a)

U(r) ∈ G3(W
(r), Z(r)), r = 1, 2, . . . , (A.5b)

U(r) → Ū as r → ∞. (A.5c)

Then it is necessary to show that Ū ∈ G3(W̄ , Z̄).
In fact, let

Iji(W, Z) =
{

s ∈ Q|s = arg min
1� l �k

d∑
h=1

w�
lh(xih − zlh)

2

}

for 1�j �k, 1� i�n. From Eq. (A.5a) it follows that
Iji(W

(r), Z(r)) → Iji(W̄ , Z̄) as r → ∞. Note that Iji(W, Z)

is a finite set for all i, j , thus there exists an r1 such that

Iji(W
(r), Z(r)) = Iji(W̄ , Z̄) for all r > r1. (A.6)

From Eq. (A.5c) it follows that u
(r)
ji → ūj i as r → ∞. Since

uji = 1 or 0 for all k-partition U, there exists an r2 such that

u
(r)
ji = ūj i for all r > r2. (A.7)

From Eq. (A.5b) we have

u
(r)
ji = 1 for some j ∈ Iji(W

(r), Z(r)) ∀r . (A.8)

Thus from Eqs. (A.6)–(A.8) it follows that

ūj i = 1 for some j ∈ Iji(W̄ , Z̄),

which gives Ū ∈ G3(W̄ , Z̄). This proves the theorem. �

Theorem 12 follows immediately from Lemmas 19–21 and
Corollary 5.

A.5. Proof of Theorem 13

Theorem 13 follows immediately from the following two
lemmas, i.e., Lemmas 22 and 23.

Lemma 22. Let [conv(D)]k be the k-fold Cartesian product of
the convex hull of D, and let (W(0), Z(0), U(0)) be the starting
point of iteration with T�,� with W(0) ∈ Mf k , Z(0) ∈ Rkd and
U(0) ∈ G3(W

(0), Z(0)). Then

T r
�,�(W

(0), Z(0), U(0)) ∈ Mf k × [conv(D)]k × Mk ,

for r = 1, 2, . . . , where T r
�,� = T�,� ◦ T�,� ◦ · · · ◦ T�,� (r times).

Proof. Let W(0) ∈ Mf k and Z(0) ∈ Rkd be chosen. Then U(0)

is calculated to satisfy Eq. (6c), hence U(0) ∈ Mk . Continuing
recursively, we have Z(1) =G1(W

(0), U(0)) which is calculated
via Eq. (6b) as

z
(1)
jh =

∑n
i=1u

(0)
j i xih∑n

i=1u
(0)
j i

, 1�j �k, 1�h�d,

or

z(1)
j =

∑n
i=1u

(0)
j i xi∑n

i=1u
(0)
j i

, 1�j �k.

Let

ji = u
(0)
j i∑n

i=1u
(0)
j i

, 1� i�n.

From Eq. (1), it must be that 0�ji �1 for all j, i and therefore

z(1)
j =

n∑
i=1

jixi ,

with

n∑
i=1

ji =
n∑

i=1

(
u

(0)
j i∑n

i=1u
(0)
j i

)
=
∑n

i=1u
(0)
j i∑n

i=1u
(0)
j i

= 1.

Thus z(1)
j ∈ conv(D) for all 1�j �k, and therefore Z(1) =

(z1, z2, . . . , zk)
T ∈ [conv(D)]k .

Since W(1) = G2(Z
(1), U(0)) is calculated using Eqs. (6a)

we know that W(1) ∈ Mf k . Then U(1) ∈ G3(W
(1), Z(1)) is

calculated to satisfy Eq. (6c), we know that U(1) ∈ Mk .
Thus every iteration of T�,� belongs to Mf k × [conv(D)]k ×

Mk . This proves the lemma. �

Lemma 23. Let [conv(D)]k be the k-fold Cartesian product of
the convex hull of D. Then Mf k ×[conv(D)]k ×Mk is compact
in Mf k ×Rkd × Mk .
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Proof. From Eq. (3) it follows that Mf k is closed and bounded,
and therefore compact. [conv(D)]k is also compact [22,
Theorem 3].

To see that Mk is compact, we note that D is a finite
discrete set. The number of elements in Mk is the number of
k-partitions of D. Thus Mk is closed and bounded, and therefore
compact. Thus Mf k × [conv(D)]k × Mk is compact in Mf k ×
Rkd × Mk . �
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