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Abstract— A new subspace clustering algorithm, PARTCAT,
is proposed to cluster high dimensional categorical data. The
architecture of PARTCAT is based on the recently developed
neural network architecture PART, and a major modification is
provided in order to deal with categorical attributes. PARTCAT
requires less number of parameters than PART, and in partic-
ular, PARTCAT does not need the distance parameter that is
needed in PART and is intimately related to the similarity in
each fixed dimension. Some simulations using real data sets to
show the performance of PARTCAT are provided.

I. INTRODUCTION

Data clustering is an unsupervised process that divides a
given data set into groups or clusters such that the points
within the same cluster are more similar than points across
different clusters. Data clustering is a primary tool of data
mining, a process of exploration and analysis of large amount
of data in order to discover useful information, thus has
found applications in many areas such as text mining, pat-
tern recognition, gene expressions, customer segmentations,
image processing, to name just a few. An overview of the
topic can be found in [1]–[4].

Although various algorithms have been developed, most of
these clustering algorithms do not work efficiently for high
dimensional data because of the inherent sparsity of data [5].
Consequently, dimension reduction techniques such as PCA
(Principal Component Analysis) [6] and Karhunen-Loève
Transformation [7], or feature selection techniques have been
used in order to reduce the dimensionality before clustering.
Unfortunately, such dimension reduction techniques require
selecting certain dimensions in advance, which may lead
to a significant loss of information. This can be illustrated
by considering a 3-dimensional data set that has 3 clusters
(See Fig. 1): one is embedded in (x, y)-plane, another is
embedded in (y, z)-plane and the third one is embedded
in (z, x)-plane. For such a data set, an application of a
dimension reduction or a feature selection method is unable
to recover all the cluster structures, because the 3 clusters
are formed in different subspaces. In general, clustering
algorithms based on dimension reduction or feature selection
techniques generate clusters that may not fully reflect the
original cluster structures. As a result, projected clustering
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or subspace clustering has been introduced to identify the
clusters embedded in the subspaces of the original space [7],
[8].
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Fig. 1. A data set with three clusters embedded in different planes. The
blue cluster is embedded in the (x, y)-plane, the red cluster is embedded in
the (y, z)-plane, and the black cluster is embedded in the (z, x)-plane.

After a subspace clustering algorithm called CLIQUE was
first introduced by Agrawal et. al. [7], several subspace
clustering algorithms have been developed, such as PART [5],
PROCLUS [8], ORCLUS [9], FINDIT [10], SUBCAD [11]
and MAFIA [12]. However, working only on numerical
data of these algorithms restricts their uses in data mining
where categorical data sets are frequently encountered. In this
paper, we propose an algorithm called PARTCAT (Projective
Adaptive Resonance Theory for CATegorical data clustering)
based on a neural network architecture PART (Projective
Adaptive Resonance Theory) for clustering high dimensional
categorical data.

PART [5], [13], [14] is a new neural network architecture
that was proposed to find clusters embedded in subspaces of
high dimensional spaces. The neural network architecture in
PART is based on the well known ART (Adaptive Resonance
Theory) developed by Carpenter and Grossberg [15]–[17]
(See Fig. 2). In PART, a so-called selective output signaling
mechanism is provided in order to deal with the inherent
sparsity in the full space of the high dimensional data
points. Under this selective output signaling mechanism,
signal generated in a neural node in the input layer can be
transmitted to a neural node in the clustering layer only when
the signal is similar to the top-down weight between the
two neural nodes. Thus with this selective output signaling
mechanism, PART is able to find dimensions where subspace
clusters can be found.
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Fig. 2. Simplified configuration of ART architecture consisting of an input
layer F1, a clustering layer F2 and a reset subsystem.1

The basic architecture of PART consists of three layers and
a reset mechanism (See Fig. 3). The three layers are input and
comparison layer(F1 layer), clustering layer(F2 layer) and a
hidden layer associated with each F1 layer neural node vi

for similarity check to determine whether the neural node
vi is active to a F2 layer neural node vj . PART Tree is
an extension of the basic PART architecture. When all data
points in the data set are clustered, we obtain a F2 layer
with projected clusters or outliers in each F2 layer node,
then data points in each projected cluster in F2 layer nodes
form a new data set, the same process is applied to each of
those new data sets with a higher vigilance condition. This
process is continued until some stop condition is satisfied,
then the PART Tree is obtained.

Fig. 3. PART architecture. F1 layer is the input and comparison layer,
F2 layer is the clustering layer. In addition, there are a reset mechanism
and a hidden layer associated with each F1 node vi for similarity check to
determine whether vi is active to an F2 node vj .1

PART is very effective to find the subspace in which
a cluster embedded, but the difficulty of choosing some
parameters in the algorithm of PART restricts its application.
For example, it is very difficult for users to choose an
appropriate value for σ, the distance parameter used to
control the similarities between data points in PART. On the
one hand, if we choose a small value for σ, the algorithm
may not capture the similarities of two similar data points
and may end up with each single data point as a cluster;

1Reprinted from Neural Networks, Volume 15, Y. Cao and J. Wu,
Projective ART for clustering data sets in high dimensional spaces, p106,
Copyright (2002), with permission from Elsevier.

on the other hand, if we choose a large value for σ, the
algorithm may not differentiate two dissimilar data points
and may produce a single cluster containing all data points.

The algorithm PARTCAT proposed in this paper follows
the same neural architecture as PART. The principal dif-
ference between PARTCAT and PART is the up-bottom
weight and the learning phase. In addition, the important
feature of PARTCAT that σ is not needed is trivial for
categorical data, since the distance between two categories
takes one of two possible values: 0 if they are identical or
1 if they are different. The remaining part of this paper is
organized as follows. In Section II, the PART algorithm is
briefly reviewed. In Section III and Section IV, PARTCAT
is introduced in detail. In Section V, experimental results
on real data sets are presented to illustrate the performance
of PARTCAT. In Section VI, some concluding remarks are
given for PARTCAT.

II. BASIC ARCHITECTURE OF PART

The basic PART architecture consists of three components:
input layer(comparison layer) F1, clustering layer F2 and a
reset mechanism [5]. Let the nodes in F1 layer be denoted by
vi, i = 1, 2, ..., m; nodes in F2 layer be denoted by vj , j =
m+1, ..., m+n; the activation of an F1 node vi be denoted
by xi, the activation of an F2 node vj be denoted by xj .
Let the bottom-up weight from vi to vj be denoted by zij ,
the top-down weight from vj to vi be denoted by zji. Then
in PART, the selective output signal of an F1 node vi to a
committed F2 node vj is defined by

hij = h(xi, zij , zji) = hσ(f1(xi), zji)l(zij), (1)

where f1 is a signal function, hσ(·, ·) is defined as

hσ(a, b) =
{

1, if d(a, b) ≤ σ,
0, if d(a, b) > σ,

(2)

with d(a, b) being a quasi-distance function, and l(·) is
defined as

l(zij) =
{

1, if zij > θ,
0, if zij ≤ θ,

(3)

with θ being 0 or a small number to be specified as a
threshold, σ is a distance parameter.

A F1 node vi is said to be active to vj if hij = 1, and
inactive to vj is hij = 0.

In PART, a F2 node vj is said to be a winner either if
Γ �= φ and Tj = maxΓ, or if Γ = φ and node vj is the next
non-committed node in F2 layer, where Γ is a set defined as
Γ = {Tk : F2 node vk is committed and has not been reset
on the current trial} with Tk being defined as

Tk =
∑

vi∈F1

zikhik =
∑

vi∈F1

zikh(xi, zik, zki). (4)

A winning F2 node will become active and all other F2

nodes will become inactive, since F2 layer makes a choice
by winner-take-all paradigm:

f2(xj) =
{

1, if node vj is a winner,
0, otherwise.

(5)
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For the vigilance and reset mechanism of PART, if a
winning (active) F2 node vj does not satisfy some vigilance
conditions, it will be reset so that the node vj will always
be inactive during the rest of the current trial. The vigilance
conditions in PART also control the degree of similarity of
patterns grouped in the same cluster. For a winning F2 node
vj , it will be reset if and only if

rj < ρ, (6)

where ρ ∈ {1, 2, ..., m} is a vigilance parameter, and rj is
defined as

rj =
∑

i

hij (7)

Therefore, the vigilance parameter ρ controls the size of
subspace dimensions, and the distance parameter σ controls
the degree of similarity in a specific dimension involved.
For real world data, the distance parameter σ is difficult for
user to choose, but in our algorithm PARTCAT, the distance
parameter is no longer needed.

In PART, the learning are determined by the following
formula. For the committed F2 node vj which has passed
the vigilance test, the new bottom-up weight is defined as

znew
ij =

{ L
L−1+|X| , if F1 node vi is active to vj ,
0, if F1 node vi is inactive to vj ,

(8)
where L is a constant and |X | denotes the number of
elements in the set X = {i : hij = 1}, and the new top-
down weight is defined as

znew
ji = (1 − α)zold

ji + αIi, (9)

where 0 ≤ α ≤ 1 is the learning rate.
For a non-committed winner vj , and for every F1 node vi,

the new weights are defined as

znew
ij =

L

L − 1 + m
, (10)

znew
ji = Ii. (11)

In PART, each committed F2 node vj represents a sub-
space cluster Cj . Let Dj be the set of subspace dimensions
associated with Cj , then i ∈ Dj if and only if l(zij) = 1,
i.e. the set Dj is determined by l(zij).

III. BASIC ARCHITECTURE OF PARTCAT

PARTCAT is an extension of PART, which has the same
neural network architecture as PART. We use the same
notations defined as in Section II. In PARTCAT, the selective
output signal from F1 node vi to F2 node vj is defined as

hij = h(xi, zij , zji) = δ(xi, zji)l(zij), (12)

where l(zij) is defined as in Equation (3), and δ(·, ·) is the
Simply Matching distance [18], i.e.

δ(a, b) =
{

1, if a = b,
0, if a �= b,

(13)

The learning formula of PARTCAT have little difference
from that of PART. For a non-committed winner vj and

ρ

Vigilance
test

F2

F1 v1 vi vm

vm+1 vj vm+n

zijzji

x

xi

Fig. 4. PARTCAT architecture: F1 layer is the input and comparison layer,
F2 layer is the clustering layer. In addition, there are a reset mechanism
and a hidden layer associated with each node vi in F1 layer for similarity
check to determine whether vi is actively relative to node vj in F2 layer.

for every F1 node vi, the new weights are defined in
Equations (10) and (11). For the committed winning F2 node
vj which has passed the vigilance test, the bottom-up weight
is updated based on the formula defined in Equation (8).
Nevertheless, the top-down weight is updated according to
the following rule.

For the learning rule of top-down weight znew
ji of the com-

mitted winning F2 node vj which has passed the vigilance
test, we need to change it so that it is suitable for categorical
values. To do this, let Ts be a symbol table of the input data
set and Tf(Cj) be the frequency table for F2 node vj(See
Appendix), where Cj is the cluster in node vj . Let fkr(Cj)
be the number of elements in cluster Cj whose kth attribute
takes value Akr, i.e.

fkr(Cj) = |{x ∈ Cj : xk = Akr}|,
where xk is the kth component of x and Akr is a state of the
kth variable’s domain DOM(Ak) = (Ak1, Ak2, ..., Aknk

).
Let Nj denote the number of elements in F2 node vj , then

we have

Nj =
nk∑

r=1

fkr(Cj), ∀k, j.

Now we can define the learning rule for top-down weight
znew

ji of the committed F2 node vj to vi as

znew
ji = Aili , i = 1, 2, ..., m,

where li(1 ≤ li ≤ ni) is defined by

li = arg max
1≤r≤ni

fnew
ir (Cj).

where fnew
ir (Cj) is defined as

fnew
ir (Cj) = fold

ir (Cj) + δ(Ii, Air).

where δ(·, ·) is the Simple Matching distance defined in
Equation (13).

Therefore, in PARTCAT, we no longer need the distance
parameter σ since we use Simple Matching distance in our
algorithm.

4408



A. PARTCAT tree

PARTCAT tree is an extension of the basic PARTCAT
architecture. Data points in a F2 node can be further clustered
by increasing the vigilance parameter ρ. When each F2 node
is clustered using the basic PARTCAT architecture, we obtain
a new F2 layer consisting of new sets of projected clusters. A
PARTCAT tree is obtained when this process is continued for
the new F2 layer. A natural stop condition for this process
is ρ > m. Another stop condition is that the number of
elements in a F2 layer is less than Nmin, where Nmin is a
constant, i.e. when a F2 node has less than Nmin elements,
the cluster in this node will not be further clustered.

IV. ALGORITHMS

The principle difference between the algorithm PARTCAT
and the algorithm PART is the learning rule for top-down
weight of the committed winning F2 node that has passed
the vigilance test.

A. F1 activation and computation of hij

Let Ii be the input from the ith node of F1 layer, then we
compute hij by Equation (12) with xi = Ii, i.e.

hij = δ(Ii, zji)l(zij). (14)

where δ(·, ·) is the Simple Matching distance.

B. F2 activation and selection of winner

For the committed F2 nodes, we compute Tj in Equa-
tion (4), therefore by Equation (14), we have

Tj =
∑

vi∈F1

zijhij =
∑

vi∈F1

zijδ(Ii, zji)l(zij). (15)

To select the winner, we use the same rule as PART. Let
Γ = {Tj : F2 node vj is committed and has not been reset
on the current trial}, then a F2 node vj is said to be a winner
either if Γ �= φ and Tj = maxΓ, or if Γ = φ and node vj is
the next non-committed node in F2 layer.

C. Vigilance test

PARTCAT uses the same reset mechanism as PART. If a
winner can not pass a vigilance test, it will be reset by the
reset mechanism. A winning committed F2 node vj will be
reset if and only if ∑

i

hij < ρ. (16)

where ρ ∈ {1, 2, ..., m} is a vigilance parameter.

D. Learning and Dimensions of projected clusters

The learning scheme in PARTCAT is different from PART.
We specify the learning formula of PARTCAT in Section III.
Each committed F2 node vj represents a projected cluster
Cj , let Dj be the corresponding set of subspace dimensions
associated with Cj , then i ∈ Dj if and only if l(zij) = 1. The
pseudo-code of the PARTCAT tree algorithm is described in
Algorithm 1.

Algorithm 1 The tree algorithm of PARTCAT.
Require: D - the categorical data set,m - number of dimen-

sions, k - number of clusters;
1: Number of m nodes in F1 layer ⇐ number of dimen-

sions;
number of k nodes in F2 layer ⇐ expected maximum
number of clusters that can be formed at each clustering
level;
Set values for L, ρ0, ρh and θ;

2: ρ ⇐ ρ0;
3: S ⇐ D;
4: repeat
5: Set all F2 nodes as being non-committed;
6: repeat
7: for all data points in S do
8: Compute hij for all F1 nodes vi and F2 nodes

vj ;
9: if at least one of F1 nodes are committed then

10: Compute Tj for all committed F2 nodes vj ;
11: end if
12: repeat
13: Select the winning F2 node vJ ;
14: if the winner is a committed node then
15: Compute rJ ;
16: if rJ < ρ then
17: Reset the winner vJ ;
18: end if
19: else
20: break;
21: end if
22: until rj ≥ ρ
23: if no F2 node can be selected then
24: put the input data into outlier O;
25: break;
26: end if
27: Set the winner vJ as the committed, and update

the bottom-up and top-down weights for winner
node vj ;

28: end for
29: until the difference of the output of the clusters in two

successive step becomes sufficiently small
30: for all cluster Cj in F2 layer do
31: Compute the associated dimension set Dj , then set

S ⇐ Cj and ρ ⇐ ρ + ρh and do the same process;
32: end for
33: For the outlier set O, set S ⇐ O and do the same

process;
34: until some stop criterion is satisfied
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V. EXPERIMENTAL EVALUATIONS

PARTCAT is coded in C++ programming language. Ex-
periments on real data sets are conducted on a Sun Blade
1000 workstation. For all the simulations in this section,
we specify L = 2 and θ = 0. Some parameters (e.g. the
number of dimensions m and the size of the data set n) are
determined by the specific data set. Other parameters (e.g.
the initial subspace dimensions ρ0 and the dimension step
ρh) are chosen by experiments for the individual data set.

For the purpose of comparison of clustering results, we
also implement the k-Modes algorithm [19] which is well-
know for clustering categorical data sets. We apply both
algorithms to the data sets. In the k-Modes algorithm, we
choose the initial modes randomly from the data set.

A. Data sets

Instead of generating synthetic data to validate the clus-
tering algorithm, we use real data sets to test our algorithm
for two reasons. Firstly, synthetic data sets may not well
represent real world data [19]. Secondly, most of the data
generation methods were developed for generating numeric
data. The real data sets used to test PARTCAT are obtained
from UCI Machine Learning Repository [20]. All these data
sets have class labels assigned to the instances.

1) Soybean data: The first real data set is the soybean
disease data set [20], obtained from the UCI Machine Learn-
ing Repository. The soybean data set has 47 records each of
which is described by 35 attributes. Each record is labeled
as one of the 4 diseases: diaporthe stem rot, charcoal rot,
rhizoctonia root rot and phytophthora rot. Except for the
phytophthora rot which has 17 instances, all other diseases
have 10 instances each. We use D1, D2,D3,D4 to denote the
4 diseases. Since there are 14 attributes that have only one
category, we only selected other 21 attributes for the purpose
of clustering.

2) Zoo data: The second real data set is the zoo data [20].
The zoo data has 101 instances each of which is described
by 18 attributes. Since one of the attributes is animal name
which is unique for each instance and one of the attributes is
animal type which can be treated as class label, we only
selected other 16 attributes for the purpose of clustering.
Each instance in this data set is labeled to be one of 7 classes.

3) Mushroom data: The third real data set is the mush-
room data set [20], also obtained from UCI Machine Learn-
ing Repository. There are total 8124 records each of which is
described by 22 attributes in the data set, and all attributes of
this data set are nominally valued. There are some missing
values in this data set, since the missing value can be treated
as a special state of the categorical variable, we use the whole
data set for clustering. Each instance in the data set is labeled
to be one of the two classes: edible(e) and poisonous(p).

B. Results

For the soybean data set, we set number of initial subspace
dimensions ρ0 to be 7, dimension step ρh to be 1, expected
maximum number of clusters to be formed at each clustering

level k to be 4, and the minimum members for each cluster
Nmin to be 20. Apply PARTCAT to the soybean data set
using these parameters, we got the results described in
Table I. Table II gives the results of applying the k-Modes
algorithm to the soybean data set.

TABLE I

PARTCAT: THE MISCLASSIFICATION MATRIX OF THE SOYBEAN DATA

SET.

D1 D2 D3 D4
C1 10 0 1 0
C2 0 10 0 0
C3 0 0 9 0
C4 0 0 0 17

TABLE II

k-MODES: THE MISCLASSIFICATION MATRIX OF THE SOYBEAN DATA

SET.

D1 D2 D3 D4
C1 7 0 0 10
C2 2 10 0 0
C3 1 0 0 7
C4 0 0 10 0

For each cluster of the soybean data set, the subspace
dimensions associated with each cluster found by PARTCAT
is described in Table III. From Table III, we see that the
subspace dimensions associated with different clusters are
different.

Also from Table I and Table II, we see that there is only
one point which is misclassified by the PARTCAT algorithm,
but there are ten points which are misclassified by the k-
Modes algorithm.

TABLE III

PARTCAT: THE SUBSPACE DIMENSIONS ASSOCIATED WITH EACH

CLUSTER OF THE SOYBEAN DATA SET.

Clusters Subspace dimensions
C1 2, 3, 11, 16, 18, 19, 21
C2 2, 3, 8, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21
C3 3, 7, 15, 18, 19, 20
C4 2, 7, 11,14, 15, 17, 18, 19, 20, 21

To cluster the zoo data using PARTCAT, we set number
of initial subspace dimensions ρ0 to be 3, dimension step
ρh to be 1, expected maximum number of clusters to be
formed at each clustering level k to be 5, and the minimum
members for each cluster Nmin to be 20. Apply PARTCAT
to this data set using these parameters, we got the results
described in Table IV. Table V shown the results produced
by the k-Modes algorithm.

For the 7 clusters of the zoo data, the subspace information
for each cluster is described in Table VI. Compare the results
in Table IV and the results in Table V, we see that the k-
Modes algorithm may split a large cluster in the whole data
space.

For the mushroom data set, we set number of initial
subspace dimensions ρ0 to be 8, dimension step ρh to be
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TABLE IV

PARTCAT: THE MISCLASSIFICATION MATRIX OF THE ZOO DATA.

1 2 3 4 5 6 7
C1 35 0 0 0 0 0 0
C2 4 0 0 0 0 0 0
C3 0 4 3 0 2 0 1
C4 2 16 0 0 0 0 0
C5 0 0 0 0 2 8 8
C6 0 0 2 0 0 0 1
C7 0 0 0 13 0 0 0

TABLE V

k-MODES: THE MISCLASSIFICATION MATRIX OF THE ZOO DATA.

1 2 3 4 5 6 7
C1 22 0 0 0 0 0 0
C2 0 0 0 0 0 8 10
C3 0 11 0 0 0 0 0
C4 0 0 4 0 4 0 0
C5 19 0 0 0 0 0 0
C6 0 0 1 13 0 0 0
C7 0 9 0 0 0 0 0

2, expected maximum number of clusters to be formed at
each clustering level k to be 4, and the minimum members
for each cluster Nmin to be 500. If we apply PARTCAT to
the mushroom data using these parameters values, we got
results described in Table VII.

If we cluster the mushroom data into 20 clusters using
PARTCAT, we see that most of the clusters are correct, except
6 clusters that contain both edible and poisonous mushrooms.
Also we got some big clusters, such as clusters C4 and
C12 which have more that 1000 data points. The subspace
information of these clusters is described in Table IX. This
is another example show that subspaces in which different

TABLE VI

PARTCAT: THE SUBSPACE DIMENSIONS ASSOCIATED WITH EACH

CLUSTER OF THE ZOO DATA SET.

Clusters Subspace dimensions
C1 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13
C2 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16
C3 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15
C4 5, 9, 10, 11, 12, 13, 14
C5 2, 3, 4, 12, 14, 16
C6 1, 2, 4, 5, 7, 11, 12, 14, 15, 16
C7 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14

TABLE VII

PARTCAT: THE MISCLASSIFICATION MATRIX OF THE MUSHROOM DATA.

Clusters e p Clusters e p
C1 64 0 C11 32 72
C2 448 216 C12 0 1296
C3 0 256 C13 192 0
C4 1920 0 C14 0 270
C5 96 96 C15 0 432
C6 288 0 C16 0 270
C7 0 104 C17 0 120
C8 0 414 C18 0 222
C9 384 72 C19 304 36

C10 192 0 C20 288 40

TABLE VIII

k-MODES: THE MISCLASSIFICATION MATRIX OF THE MUSHROOM DATA.

Clusters e p Clusters e p
C1 0 333 C11 0 136
C2 623 16 C12 0 224
C3 0 774 C13 15 170
C4 576 303 C14 70 20
C5 0 258 C15 793 0
C6 0 241 C16 59 222
C7 0 550 C17 0 41
C8 694 259 C18 7 179
C9 0 168 C19 302 1
C10 362 0 C20 707 21

clusters are embedded are different.
If we cluster the mushroom data into 20 clusters using

the k-Modes algorithm, the number of correct clusters is
less than the number of correct clusters produced by the
PARTCAT algorithm. Also the size of the largest cluster
obtained by the k-Modes algorithm is much smaller than
the size of the largest cluster obtained by the PARTCAT
algorithm.

TABLE IX

PARTCAT: THE SUBSPACE DIMENSIONS ASSOCIATED WITH EACH

CLUSTER OF THE MUSHROOM DATA SET.

Clusters Subspace dimensions
C1 1, 4, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19
C2 4,6, 7, 10, 12,14, 15, 16, 17, 18, 19
C3 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
C4 5, 6, 16, 17, 18
C5 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22
C6 6, 7, 10, 12, 13, 14, 15, 16, 17, 18
C7 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
C8 4, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21
C9 6, 8, 12, 14, 15, 16, 17, 18

C10 1, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 18, 19, 22
C11 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
C12 4, 5, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 20
C13 4, 5, 6, 7, 8, 10, 11, 12, 13,16, 17, 18, 19, 20, 21, 22
C14 1, 2, 4, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21
C15 2, 4, 6, 7, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21
C16 1, 2, 4, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21
C17 4, 6, 7, 8, 9, 10, 11, 14, 16, 17, 18, 19, 20, 21, 22
C18 1, 2, 4, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21
C19 4, 8, 10, 16, 17, 20
C20 4, 5, 10, 16, 18

VI. DISCUSSION AND CONCLUSIONS

Most traditional clustering algorithms do not work effi-
ciently for high dimensional data. Due to the inherent sparsity
of the data points, it is not feasible to identify interesting
clusters in the whole data space. In order to deal with high
dimensional data, some techniques such as feature selection
have been applied before clustering. But these techniques
require pruning off variables in advance which may lead
to unreliable clustering results. High dimensional categorical
data have the same problem.

We propose a neural network clustering algorithm based
on the neural network algorithm PART [5], [13], [14] in
order to identify clusters embedded in the subspaces of the
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data space instead of the whole data space. Unlike the PART
algorithm, our algorithm PARTCAT is designed for clustering
high dimensional categorical data.

Some subspace clustering algorithms such as CLIQUE [7],
PROCLUS [8] and MAFIA [12] have been developed and
studied, but they can only be applied to numerical data.
To compare the clustering results with traditional clustering
algorithms, we implement the k-Modes algorithm [19]. From
the simulations described in Section V, we have seen that
PARTCAT is able to generates better clustering results than
the k-Modes algorithm. The reason for this is that PARTCAT
identifies the clusters in the subspace of the whole data
space, while the k-Modes algorithm finds the clusters in the
whole data space. However, PARTCAT does not outperform
SUBCAD, a subspace clustering algorithm proposed by Gan
and Wu [11] for clustering high dimensional categorical data
sets.

APPENDIX

SYMBOL TABLE AND FREQUENCY TABLE

The concepts of symbol table and frequency table are
specific for categorical data sets. Given a d-dimensional
categorical data set D, let Aj be the categorical variable
of the jth dimension(1 ≤ j ≤ d). We define its domain
by DOM(Aj) = {Aj1, Aj2, ..., Ajnj} and we call Ajr(1 ≤
r ≤ nj) a state of the categorical variable Aj . Then a symbol
table Ts of the data set is defined as:

Ts = (s1, s2, ..., sd).

where sj is a vector defined as sj = (Aj1, Aj2, ..., Ajnj )T .
Note that the symbol table for a data set is not unique, since
states may have many permutations.

The frequency table of a cluster is computed according to
a symbol table of that data set and it has exactly the same
dimension as the symbol table. Let C be a cluster, then the
frequency table Tf(C) of cluster C is defined as

Tf (C) = (f1(C), f2(C), ..., fd(C)), (17)

where fj(C) is a vector defined as

fj(C) = (fj1(C), fj2(C), ..., fjnj (C))T , (18)

where fjr(C)(1 ≤ j ≤ d, 1 ≤ r ≤ nj) is the number of
data points in cluster C which take value Ajr at the jth
dimension, i.e.

fjr(C) = |{x ∈ C : xj = Ajr}|, (19)

where xj is the jth component of x. For a given symbol
table of the data set, the frequency table of each cluster is
unique according to that symbol table.
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