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Abstract. In fuzzy clustering algorithms each object has a fuzzy mem-
bership associated with each cluster indicating the degree of association
of the object to the cluster. Here we present a fuzzy subspace clustering
algorithm, FSC, in which each dimension has a weight associated with
each cluster indicating the degree of importance of the dimension to the
cluster. Using fuzzy techniques for subspace clustering, our algorithm
avoids the difficulty of choosing appropriate cluster dimensions for each
cluster during the iterations. Our analysis and simulations strongly show
that FSC is very efficient and the clustering results produced by FSC are
very high in accuracy.

1 Introduction

Data clustering[1] is an unsupervised process that divides a given data set into
groups or clusters such that the points within the same cluster are more similar
than points across different clusters. Data clustering is a primary tool of data
mining, a process of exploration and analysis of large amount of data in order
to discover useful information, thus has found applications in many areas such
as text mining, pattern recognition, gene expressions, customer segmentations,
image processing, to name just a few.

For data sets in high dimensional spaces, most of the conventional clustering
algorithms do not work well in terms of effectiveness and efficiency, because
of the inherent sparsity of high dimensional data [2]. To cluster data in high
dimensional spaces, we encounter several problems. First of all, the distance
between any two points becomes almost the same [2], therefore it is difficult
to differentiate similar data points from dissimilar ones. Secondly, clusters are
embedded in the subspaces of the high dimensional space, and different clusters
may exist in different subspaces of different dimensions [3]. Because of these
problems, almost all conventional clustering algorithms fail to work well for
high dimensional data sets. One possible solution is to use dimension reduction
techniques such as PCA(Principal Component Analysis) and Karhunen-Loève
Transformation, or feature selection techniques [3].

X. Li, O.R. Zaiane, and Z. Li (Eds.): ADMA 2006, LNAI 4093, pp. 271–278, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



272 G. Gan, J. Wu, and Z. Yang

The idea behind dimension reduction approaches and feature selection ap-
proaches is to first reduce the dimensionality of the original data set by remov-
ing less important variables or by transforming the original data set into one
in a low dimensional space, and then apply conventional clustering algorithms
to cluster the new data set. In either dimension reduction approaches or fea-
ture selection approaches, it is necessary to prune off some variables, which may
lead to a significant loss of information. This can be illustrated by considering
a 3-dimensional data set that has 3 clusters: one is embedded in (x, y)-plane,
another is embedded in (y, z)-plane and the third one is embedded in (z, x)-
plane. For such a data set, an application of a dimension reduction or a feature
selection method is unable to recover all the cluster structures, for the 3 clus-
ters are formed in different subspaces. In general, clustering algorithms based on
dimension reduction or feature selection techniques generate clusters that may
not fully reflect the original cluster structures.

This difficulty that conventional clustering algorithms encounter in dealing
with high dimensional data sets inspired the invention of subspace clustering
algorithms or projected clustering algorithms [3] whose goal is to find clus-
ters embedded in subspaces of the original data space with their own associ-
ated dimensions. Some subspace clustering algorithms are designed to identify
arbitrarily oriented subspace clusters (e.g. ORCLUS and Projective k-Means)
whose cluster dimensions are linear combinations of the original dimensions,
while others are designed to discover regular subspace clusters (e.g. PART and
SUBCAD) whose cluster dimensions are elements of the set of the original di-
mensions.

However, almost all of the subspace clustering algorithms give equal non-
zero weights to cluster dimensions and zero weights to non-cluster dimensions.
Consider a cluster embedded in a 50-dimensional subspace of a 100-dimensional
data set, for example, the cluster dimensions (say 1,2,...,50) found by PROCLUS
[4] are assumed to have equal contributions to the cluster, but other dimensions
(51,52,...,100) are assumed to have zero contributions to the cluster. This practice
leads to the problem of how to choose the cluster dimensions of a specific cluster.

Motivated by fuzzy clustering and LAC [5], we propose a fuzzy subspace clus-
tering algorithm, FSC, to cluster high dimensional data sets. FSC finds regular
subspace clusters with each dimension of the original data being associated with
each cluster with a weight. The higher density of a cluster in a dimension, the
more weight will be assigned to that dimension. In other words, all dimensions of
the original data are associated with each cluster, but they have different degrees
of association with that cluster.

2 Related Work

The recent subspace clustering algorithms can be roughly classified into three
categories: Grid-based algorithms such as CLIQUE [3], MAFIA [6], Partitioning
and/or hierarchical algorithms such as ORCLUS [7], FINDIT [8], and Neural
Network-based algorithms such as PART [2].
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CLIQUE [3] first partitions the whole data space into non-overlapping rec-
tangular units, and then searches for dense units and merges them to form clus-
ters. The subspace clustering is achieved due to the fact that if a k-dimension
unit (a1, b1) × (a2, b2) × · · · × (ak, bk) is dense, then any (k − 1)-dimension unit
(ai1 , bi1)×(ai2 , bi2)×· · ·×(aik−1 , bik−1) is also dense, where (ai, bi) is the interval
of the unit in the i-th dimension, 1 ≤ i1 < i2 < · · · < ik−1 ≤ k. ENCLUS [9]
and MAFIA [6] are also Grid-based subspace clustering algorithms.

PROCLUS [4] is a variation of k-Medoid algorithm [10] for subspace cluster-
ing. PROCLUS finds out the subspace dimensions of each cluster via a process of
evaluating the locality of the space near it. FINDIT [8], ORCLUS [7], FLOC [11],
DOC [12], SUBCAD [13] and projective k-Means [14] are also partitioning sub-
space clustering algorithms.

PART [2] is a new neural network architecture to find projected clusters for
data sets in high dimensional spaces. In PART, a so-called selective output sig-
naling mechanism is provided in order to deal with the inherent sparsity in the
full space of the high dimensional data points. PART is very effective to find
the subspace in which a cluster is embedded, but the difficulty of tuning some
parameters in the algorithm and the sensitivity to data input order restrict its
application. CLTree [15] is an algorithm for clustering numerical data based on
a supervised learning technique called decision tree construction. The resulting
clusters found by CLTree are described in terms of hyper-rectangle regions. The
CLTree algorithm is able to separate outliers from real clusters effectively, since
it naturally identifies sparse and dense regions.

LAC [5] defines subspace clusters as weighted clusters such that each cluster
consists of a subset of data points together with a vector of weights. To be precise,
let us consider a data set D of n points in the d-dimensional Euclidean space and
a set of centers {z1, z2, ..., zk} ⊂ R

d, couped with a set of corresponding weight
vectors {w1,w2, ...,wk} ⊂ R

d. LAC defines the jth (1 ≤ j ≤ k) cluster as Cj ={
x ∈ D :

(
d∑

i=1
wji(xi − zji)2

) 1
2

<

(
d∑

i=1
wli(xi − zli)2

) 1
2

, ∀l �= j

}
, where xi, zji

and wji are the ith components of x, zj and wj , respectively. The centers and

weights are chose such that the error measure, E =
k∑

j=1

d∑
i=1

wjie
−Xji , is minimized

subject to the constraints
d∑

i=1
w2

ji = 1, ∀j, where Xji = 1
|Cj|

∑
x∈Cj

(xi − zji)2.

3 Fuzzy Subspace Clustering Algorithm

The main idea behind our algorithm is to impose weights to the distance measure
of the k-Means algorithm[16] in order to capture appropriate subspace informa-
tion. Given a data set D = {x1,x2, ...,xn} in the d-dimensional Euclidean space
and k centers Z = {z1, z2, ..., zk}, then the objective function of the k-Means
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algorithm is formulated as E =
k∑

j=1

∑
x∈Cj

‖x − zj‖2, where ‖ · ‖ is the Euclidean

norm and Cj is the jth cluster.
Similar to LAC [5], we associate with each cluster a weight vector in order to

capture the subspace information of that cluster. To be more precise, let W be
a k × d real matrix satisfying the following conditions:

0 ≤ wjh ≤ 1, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (1a)

d∑
h=1

wjh = 1, 1 ≤ j ≤ k. (1b)

Then the hth dimension is associated with the jth cluster to a degree of wjh

or the jth cluster has dimension weights specified by wj1, wj2, ..., wjd. We call
the weight matrix W the fuzzy dimension weight matrix. Mathematically, the
objective function of our algorithm is formated as

Ef (W, Z) =
k∑

j=1

∑
x∈Cj

d∑
h=1

wα
jh(xh − zjh)2, (2)

where α ∈ (1, ∞) is a weighting component or fuzzier. Given the estimates of Z
and W , the jth cluster are formulated as

Cj = {x ∈ D :
d∑

h=1

wα
jh(xh − zjh)2 = min

1≤l≤k

d∑
h=1

wα
lh(xh − zlh)2}, (3)

together with the fuzzy dimension weights wj = (wj1, wj2, ..., wjd).
To find the cluster centers Z given the estimate of W such that the objective

function Ef (W, Z) defined in Equation (2) is minimized, we take partial deriva-
tives of Ef (W, Z) with respect to zjhs, set them to zeros and solve the resulting
equation system. That is,

∂Ef (W, Z)
∂zjh

=
∑
x∈Cj

−2wα
jh(xh − zjh) = 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d,

which give

zjh =

∑
x∈Cj

wα
jhxh∑

x∈Cj

wα
jh

=

∑
x∈Cj

xh

|Cj |
, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (4)

where |Cj | denotes the number of points in Cj .
To find the fuzzy dimension weight matrix W given the estimate of Z such that

the objective function Ef (W, Z) is minimized, we use the method of Lagrange
multipliers. To do this, we first write the Lagrangian function as

F (W, Z, Λ) = Ef (W, Z) −
k∑

j=1

λj

(
d∑

h=1

wjh − 1

)
.
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By taking partial derivatives, we have

∂F (W, Z, Λ)
∂wjh

=
∑
x∈Cj

αwα−1
jh (xh − zjh)2 − λj = 0, 1 ≤ j ≤ k, 1 ≤ h ≤ d,

and
∂F (W, Z, Λ)

∂λj
=

d∑
h=1

wjh − 1 = 0, 1 ≤ j ≤ k,

which, with some simple manipulations, leads to

wjh =
1

d∑
l=1

[ �

x∈Cj

(xh−zjh)2

�

x∈Cj

(xl−zjl)2

] 1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d. (5)

To avoid divide-by-zero error, we introduce a small bias ε (say ε = 0.0001) in
Equation (5). That is, we update W given the estimate of Z as follows:

wjh =
1

d∑
l=1

[
Vjh+ε
Vjl+ε

] 1
α−1

, 1 ≤ j ≤ k, 1 ≤ h ≤ d, (6)

where Vjh =
∑

x∈Cj

(xh − zjh)2 for 1 ≤ j ≤ k and 1 ≤ h ≤ d.

We see from Equation (4) and Equation (6) that FSC is very similar to the
fuzzy k-Means algorithm [17] in terms of the way they update centers and fuzzy
weights. FSC starts with initial centers Z, and then repeats estimating the fuzzy
dimension weight matrix W given the estimate of Z and estimating the centers
Z given the estimate of W until it converges.

4 Experimental Evaluations

FSC is coded in C++ programming language. Synthetic data sets are generated
by a Matlab program using the method introduced by Aggarwal et al. [4]. In our
experiments, we specify α = 2.1.

Our first data set contains 300 3-dimensional points with 3 clusters embedded
in different planes. We run FSC 100 times on this data with k = 3 and get the

Table 1. FSC: The input clusters (left) and the output fuzzy dimension weights to-
gether with the cluster dimensions (right) for the first data set

Input Dimensions Points
A 1,2 100
B 2,3 100
C 3,1 100

Found wi1 wi2 wi3 Dimensions Points
1 0.040034 0.444520 0.515446 2, 3 100
2 0.573635 0.391231 0.035134 2, 1 100
3 0.427178 0.036284 0.536538 1, 3 100
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same result. The best Ef (W, Z) and average Ef (W, Z) of the 100 runs are iden-
tical to 10.691746. Table 1 summarizes the clustering results. We see from Table
1 that FSC is capable of clustering each object correctly and at the same time
identifying the true subspaces for each cluster. Note that the cluster dimensions
of a cluster are arranged in ascending order according to their weights and the
cutting point is obtained by clustering the fuzzy dimension weights of the cluster
into 2 groups by k-Means.

Table 2. FSC: Dimensions of input clusters (left) and output clusters (right) for the
second data set

Input Dimensions Points
A 6,7,8,10,11 387
B 5,7,8,10,11,12,13,16 87
C 3,5,6,10,12,13 317
D 1,3,6,9,10,11,13,18 80
E 1,10,13,20 129

Found Dimensions Points
1 20,13,10,1 129
2 9,3,1,6,10,13,11,18 80
3 3,5,12,6,13,10 317
4 11,6,10,7,8 387
5 7,16,11 87

Our second data set contains 1,000 20-dimensional points with 5 clusters
embedded in different subspaces of different dimensions (See Table 2). We also
run FSC 100 times on this data set with k = 5. The best Ef (W, Z) and the
average Ef (W, Z) are 1102.126302 and 1396.434035, respectively. In particular,
the number of correct clusterings is 49 out of 100. The best output is given in
Table 2 from which we see that in the best case all subspace clusters are recovered
by FSC except for cluster B where k-Means gives only 3 cluster dimensions.

Table 3. FSC: Dimensions of input clusters for the third data set

Input Dimensions Points
A 8,17,27,46,48,52,56,57,68,71,76,80,89,93 1462
B 5,8,17,26,27,37,40,46,48,53,56,71,84,86,89,95,97 4406
C 7,9,17,26,41,46,65,73,84,86,97 1415
D 4,17,25,26,45,65,75,83,84,97 556
E 2,6,17,18,26,29,32,39,45,49,75,83,84,97 1661
Outlier 500

Our third data set has 10,000 100-dimensional points with 5 clusters embedded
in different subspaces of different dimensions and contains 500 outliers. We run
FSC on this data set 5 times with k = 5 and 5 times with k = 6. The results
are given in Table 4 from which we see that all objects are clustered correctly
in both cases and all outliers are differentiated from real clusters in the case of
k = 6. In the case of k = 5, the best Ef (W, Z) and the average Ef (W, Z) are
3328.104712 and 4460.156128, respectively, and the number of correct clusterings
is 2 out of 5, while in the case of k = 6, the best Ef (W, Z) and the average
Ef (W, Z) are 6102.280185 and 7703.287459, respectively, and the number of
correct clusterings is 3 out of 5. We also see from Table 4 that cluster 1 has the
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Table 4. FSC: The misclassification matrices when k = 5 (top left) and k = 6 (top
right), output clusters when k = 5 (middle) and k = 6 (bottom) for the third data set

1 2 3 4 5
A 0 0 0 1462 0
B 4406 0 0 0 0
C 0 1415 0 0 0
D 0 0 0 0 556
E 0 0 1661 0 0
Outlier 0 0 0 0 500

1 2 3 4 5 6
A 0 1462 0 0 0 0
B 0 0 0 4406 0 0
C 0 0 0 0 1415 0
D 0 0 0 0 0 556
E 0 0 1661 0 0 0
Ourlier 500 0 0 0 0 0

Found Dimensions Points
1 48,56,53,17,5,46,95,86,26,84,40,97 4460
2 73,46,41,86,84,26,97,17,7,65 1415
3 26,84,17,32,39,49,6,18,83,29,75,45,2,97 1661
4 76,89,71,27,56,52,68,8,46,17,57,93,80,48 1462
5 83,25,45,4,65,97 1056

Found Dimensions Points
1 30,22,35,7,16,11,73,100,2,33,39,10,53,62,34,12,45,9,76,54,85,

61,47,82,65,20,14,43,94,77,99,41,70,96,74,23,68,59,19,50,71,92, 500
57,26,32, 3,15,51,98,37,80,79,84,49

2 76,89,71,27,56,52,68,8,46,17,57,93,80,48 1462
3 26,84,17,32,39,49,6,18,83,29,75,45,2,97 1661
4 48,56,53,17,5,46,95,86,26,84,40,97 4406
5 73,46,41,86,84,26,97,17,7,65 1415
6 65,26,17,83,4,75,84,25 556

number of cluster dimensions significantly greater than other clusters do. This
indicates that cluster 1 may be an outlier cluster.

The experiments presented above show that FSC is very powerful in recov-
ering clusters embedded in subspaces of high dimensional spaces. FSC is simple
and natural in terms of the presentation of the algorithm, and it is much eas-
ier to use than other subspace clustering algorithms such as PART and PRO-
CLUS.

5 Conclusions and Remarks

We presented the fuzzy subspace clustering algorithm FSC for clustering high
dimensional data sets. The novel contribution is the adoption of some fuzzy
techniques for subspace clustering in a way that each dimension has a fuzzy
dimension weight associated with each cluster. The experimental results have
shown that FSC is very effective in recovering the subspace cluster structures
embedded in high dimensional data. It is certainly of great interest to us if we
can adopt fuzzy techniques for identifying arbitrarily oriented subspace clusters
in high dimensional data.



278 G. Gan, J. Wu, and Z. Yang

References

[1] Jain, A., Murty, M., Flynn, P.: Data clustering: A review. ACM Computing
Surveys 31 (1999) 264–323

[2] Cao, Y., Wu, J.: Projective ART for clustering data sets in high dimensional
spaces. Neural Networks 15 (2002) 105–120

[3] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: SIGMOD Record
ACM Special Interest Group on Management of Data. (1998) 94–105

[4] Aggarwal, C., Wolf, J., Yu, P., Procopiuc, C., Park, J.: Fast algorithms for pro-
jected clustering. In: Proceedings of the 1999 ACM SIGMOD international con-
ference on Management of data, ACM Press (1999) 61–72

[5] Domeniconi, C., Papadopoulos, D., Gunopulos, D., Ma, S.: Subspace clustering
of high dimensonal data. In: Proceedings of the SIAM International Conference
on Data Mining, Lake Buena Vista, Florida (2004)

[6] Goil, S., Nagesh, H., Choudhary, A.: MAFIA: Efficient and scalable subspace
clustering for very large data sets. Technical Report CPDC-TR-9906-010, Center
for Parallel and Distributed Computing, Department of Electrical & Computer
Engineering, Northwestern University (1999)

[7] Aggarwal, C., Yu, P.: Finding generalized projected clusters in high dimensional
spaces. In Chen, W., Naughton, J.F., Bernstein, P.A., eds.: Proceedings of the
2000 ACM SIGMOD International Conference on Management of Data, May 16-
18, 2000, Dallas, Texas, USA. Volume 29., ACM (2000) 70–81

[8] Woo, K., Lee, J.: FINDIT: a fast and intelligent subspace clustering algorithm
using dimension voting. PhD thesis, Korea Advanced Institue of Science and
Technology, Department of Electrical Engineering and Computer Science (2002)

[9] Cheng, C., Fu, A., Zhang, Y.: Entropy-based subspace clustering for mining nu-
merical data. In: Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM Press (1999) 84–93

[10] Kaufman, L., Rousseeuw, P.: Finding Groups in Data–An Introduction to Cluster
Analysis. Wiley series in probability and mathematical statistics. John Wiley &
Sons, Inc., New York (1990)

[11] Yang, J., Wang, W., Wang, H., Yu, P.: δ-clusters: capturing subspace correlation
in a large data set. Data Engineering, 2002. Proceedings. 18th International
Conference on (2002) 517 –528

[12] Procopiuc, C., Jones, M., Agarwal, P., Murali, T.: A monte carlo algorithm for fast
projective clustering. In: Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, ACM Press (2002) 418–427

[13] Gan, G., Wu, J.: Subspace clustering for high dimensional categorical data. ACM
SIGKDD Explorations Newsletter 6 (2004) 87–94

[14] Agarwal, P., Mustafa, N.: k-means projective clustering. In: Proceedings of
the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems(PODS), Paris, France, ACM (2004) 155–165

[15] Liu, B., Xia, Y., Yu, P.: Clustering through decision tree construction. In: Pro-
ceedings of the ninth international conference on Information and knowledge man-
agement, McLean, Virginia, USA, ACM Press (2000) 20–29

[16] Hartigan, J.: Clustering Algorithms. John Wiley & Sons, Toronto (1975)
[17] Huang, Z., Ng, M.: A fuzzy k-modes algorithm for clustering categorical data.

IEEE Transactions on Fuzzy Systems 7 (1999) 446–452


	Introduction
	Related Work
	Fuzzy Subspace Clustering Algorithm
	Experimental Evaluations
	Conclusions and Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




