
Subspace Clustering for High Dimensional Categorical
Data

Guojun Gan
Department of Mathematics and Statistics

York University
Toronto, Canada

gjgan@mathstat.yorku.ca

Jianhong Wu
Department of Mathematics and Statistics

York University
Toronto, Canada

wujh@mathstat.yorku.ca

ABSTRACT
Data clustering has been discussed extensively, but almost
all known conventional clustering algorithms tend to break
down in high dimensional spaces because of the inherent
sparsity of the data points. Existing subspace clustering
algorithms for handling high-dimensional data focus on nu-
merical dimensions. In this paper, we designed an iterative
algorithm called SUBCAD for clustering high dimensional
categorical data sets, based on the minimization of an ob-
jective function for clustering. We deduced some cluster
memberships changing rules using the objective function.
We also designed an objective function to determine the
subspace associated with each cluster. We proved various
properties of this objective function that are essential for us
to design a fast algorithm to find the subspace associated
with each cluster. Finally, we carried out some experiments
to show the effectiveness of the proposed method and the
algorithm.

General Terms
Subspace Clustering

Keywords
Clustering, Subspace Clustering, Categorical Data

1. INTRODUCTION
Clustering has been used extensively as a primary tool of
data mining. Many clustering algorithms have been de-
signed [15; 14]. Unfortunately, most of these conventional
clustering algorithms do not scale well to cluster high di-
mensional data sets in terms of effectiveness and efficiency,
because of the inherent sparsity of high dimensional data.
In high dimensional data sets, we encounter several prob-
lems. First of all, the distance between any two data points
becomes almost the same [5], therefore it is difficult to differ-
entiate similar data points from dissimilar ones. Secondly,
clusters are embedded in the subspaces of the high dimen-
sional data space, and different clusters may exist in differ-
ent subspaces of different dimensions [3]. Because of these
problems, almost all conventional clustering algorithms fail
to work well for high dimensional data sets. One possi-
ble solution is to use dimension reduction techniques such

as PCA(Principal Component Analysis) [27] and Karhunen-
Loève Transformation [3], or feature selection techniques.

In dimension reduction approaches, one first reduces the di-
mensionality of the original data set by removing less im-
portant variables or by transforming the original data set
into one in a low dimensional space, and then applies con-
ventional clustering algorithms to the new data set. In fea-
ture selection approaches, one finds the dimensions on which
data points are correlated. In either dimension reduction ap-
proaches or feature selection approaches, it is necessary to
prune off some variables, which may lead to a significant
loss of information. This can be illustrated by considering a
3-dimension data set that has 3 clusters: one is embedded
in (x, y)-plane, another is embedded in (y, z)-plane and the
third one is embedded in (z, x)-plane. For such a data set,
an application of a dimension reduction or a feature selec-
tion method is unable to recover all the clustering structures,
because the 3 clusters are formed in different subspaces. In
general, clustering algorithms based on dimension reduction
or feature selection techniques generate clusters that may
not fully reflect the original clusters’ structure.

This difficulty that conventional clustering algorithms en-
counter in dealing with high dimensional data sets motivates
the concept of subspace clustering or projected clustering[3]
whose goal is to find clusters embedded in subspaces of the
original data space with their own associated dimensions.

Almost all the subspace clustering algorithms proposed so
far are designed for clustering high dimensional numerical
data sets. In this paper, we present SUBCAD(SUBspace
clustering for high dimensional CAtegorical Data), a sub-
space clustering algorithm for clustering high dimensional
categorical data sets. We shall develop a method to deter-
mine the subspace associated with each cluster, and we shall
design an iterative method to cluster high dimensional cat-
egorical data sets by treating the clustering process as an
optimization problem.

2. RELATED WORK
Since a subspace clustering algorithm CLIQUE [3] was first
proposed by Aggarwal et. al., several subspace clustering al-
gorithms have been designed[3; 9; 11; 19; 1; 2; 25; 8; 22; 17].
The recent subspace clustering algorithms can be roughly
divided into three categories: Grid-based algorithms such
as CLIQUE [3], MAFIA [11; 19], Partitioning and/or hier-
archical algorithms such as ORCLUS [2],FINDIT [25], and
Neural Network-based algorithms such as PART [8](See Ta-
ble 1).

AT Algorithms DT H/P
CLIQUE [3] Num O

Grid-based ENCLUS [9] Num O
MAFIA [11; 19] Num O
PROCLUS [1] Num P
ORCLUS [2] Num P

Partitioning FINDIT [25] Num P
FLOC [26] Num P
DOC [22] Num P

Neural Network PART [8] Num H
Other CLTree[17] Num O

Table 1: A list of some subspace clustering algorithms. Data
Type(DT) indicates the type of data sets which the algo-
rithm can be applied to, AT refers to Algorithm Type, Num
refers to Numerical, H/P refers to Hierarchical/Partitioning,
O refers to Other.

In the algorithm of CLIQUE, it first partitions the whole
data space into non-overlapping rectangular units, and then
searches for dense units and merges them to form clusters.
The subspace clustering is achieved due to the fact that
if a k-dimension unit (a1, b1) × (a2, b2) × · · · × (ak, bk) is
dense, then any k − 1-dimension unit (ai1 , bi1)× (ai2 , bi2)×
· · ·× (aik−1

, bik−1
) is also dense, where (ai, bi) is the interval

of the unit in the i-th dimension, 1 ≤ i1 < i2 < · · · <
ik−1 ≤ k. ENCLUS(Entropy-based CLUStering) [9] and
MAFIA(Merging of Adaptive Finite Intervals) [19; 11] are
also Grid-based subspace clustering algorithms.
PROCLUS [1] is a variation of k-Medoid algorithm [15] for
subspace clustering. The PROCLUS algorithm finds out the
subspace dimensions of each cluster via a process of eval-
uating the locality of the space near it. FINDIT(a Fast
and INtelligent subspace clustering algorithm using DImen-
sion voTing)[25], ORCLUS(arbitrarily ORiented projected
CLUSter generation) [2], FLOC [26] and DOC(Density-based
Optimal projective Clustering) [22] are also partitioning sub-
space clustering algorithms.
PART [8](Projective Adaptive Resonance Theory) is a new
neural network architecture that was proposed to find pro-
jected clusters for data sets in high dimensional spaces. In
PART, a so-called selective output signaling mechanism is
provided in order to deal with the inherent sparsity in the
full space of the high dimensional data points. PART is very
effective to find the subspace in which a cluster is embedded,
but the difficulty of tuning some parameters in the algorithm
of PART restricts its application. CLTree(CLustering based
on decision Trees)[17] is an algorithm for clustering numer-
ical data based on a supervised learning technique called
decision tree construction. The resulting clusters found by
CLTree are described in terms of hyper-rectangle regions.
The CLTree algorithm is able to separate outliers from real
clusters effectively, since it naturally identifies sparse and
dense regions.

3. ITERATIVE METHODS
To describe the algorithm, we start with some notations.
Given a data set D, let Q be the set of dimensions of D,
i.e. Q = {1, 2, ..., d}, where d is the number of dimensions
of D, let Span(Q) denote the full space of the data set,
then by a subspace cluster, we mean a cluster C associated
with a set of dimensions P such that (a) The data points

in C are “similar” to each other in the subspace Span(P)
of Span(Q)(i.e. the data points in C are compact in this
subspace); (b) The data points in C are sparse in the sub-
space Span(R), where R = Q\P (i.e. the data points in C
are spread in this subspace).

For convenience of presentation, we will use a pair (C, P)(P 6=
Φ) to denote a subspace cluster, where P is the non-empty
set of dimensions associated with C. In particular, if P = Q,
then this cluster is formed in the whole space of the data
set.

Therefore if we have a cluster C with the associated set of
dimensions P , then C is also a cluster in every subspace
of Span(P). Hence, a good subspace clustering algorithm
should be able to find clusters and the maximum associated
set of dimensions. Consider, for example, a data set with 5
data points of 6 dimensional(given in Table 2). In this data
set, it is obvious that C = {x1,x2,x3} is a cluster and the
maximum set of dimensions should be P = {1, 2, 3, 4}. A
good subspace clustering algorithm should be able to find
this cluster and the maximum set of associated dimensions
P .

Records Values
x1 (A,A,A,A,B,B)
x2 (A,A,A,A,C,D)
x3 (A,A,A,A,D,C)
x4 (B,B,C,C,D,C)
x5 (B,B,D,D,C,D)

Table 2: A sample data set illustrates clusters embedded in
subspaces of a high dimensional space.

We will introduce an objective function for subspace cluster-
ing, and then treat the clustering process as an optimization
problem with the goal to minimize the objective functions.

3.1 Objective Function
The objective function for clustering and the objective func-
tion for determining the subspace of each cluster are defined
in terms of compactness and separation.

Let C be a cluster with associated set of dimensions P . We
define the compactness of C in Span(P) and the separation
of C in Span(R)(where R = Q\P) as follows:

Cp(C, P) =

P
x,y∈C

‖x − y‖2
P

|P ||C|2
, (1)

Sp(C, R) =

8<: P
x,y∈C

‖x−y‖2
R

|R||C|2
, if R 6= Φ;

1, if R = Φ,
(2)

where |P | and |R| denote the number of elements in the
sets P and R, respectively, and ‖x − y‖2

P
=
P

j∈P

δ(xj , yj)
2

with δ(x, y) = 0 if x = y, 1 otherwise, xj and yj are the
jth dimension values of x and y, respectively, ‖x − y‖2

R
is

defined similarly. We shall also drop the index if the whole
space is involved. Then from the definition, we have

Cp(C, P) ∈ [0, 1] and Sp(C, R) ∈ [0, 1].

A natural criterion for the effectiveness of a subspace clus-
tering is to simply sum up the compactness of each cluster

and then to minus the sum of separation of each cluster.
This leads to the following objective function

Fobj =
kX

j=1

(Cp(Cj , Pj) + 1 − Sp(Cj , Rj)). (3)

Therefore, given the number of clusters k, our goal is to
partition the data set into k non-overlapping groups such
that the objective function Fobj defined in Equation (3) is
minimized. Our algorithm is to find an approximation of
the optimal partition.

In practice, we can simplify the formulas in Equation (1),
Equation (2), and therefore simplify the objective function.
To do this, we need to define the symbol table of a data
set and the frequency table for each cluster according to
the symbol table. Let Aj be the categorical variable of
the jth dimension(1 ≤ j ≤ d). We define its domain by
DOM(Aj) = {Aj1, Aj2, ..., Ajnj

} and we call Ajr(1 ≤ r ≤
nj) a state of the categorical variable Aj . Then a symbol
table Ts of the data set is defined as follows:

Ts = (s1, s2, ..., sd),

where sj is a vector defined as sj = (Aj1, Aj2, ..., Ajnj
)T .

Since there are possibly multiple states(or values) for a vari-
able, a symbol table of a data set is usually not unique. For
example, for the data set in Table 2, Table 3 is one of its
symbol tables. 0� A A A A B B

B B C C C C
D D D D

1A
Table 3: One of the symbol tables of the data set in Table 2.

The frequency table is computed according to a symbol table
and it has exactly the same dimension as the symbol table.
Let C be a cluster, then the frequency table Tf (C) of cluster
C is defined as

Tf (C) = (f1(C), f2(C), ..., fd(C)), (4)

where fj(C) is a vector defined as

fj(C) = (fj1(C), fj2(C), ..., fjnj
(C))T , (5)

where fjr(C)(1 ≤ j ≤ d, 1 ≤ r ≤ nj) is the number of
data points in cluster C which take value Ajr at the jth
dimension, i.e.

fjr(C) = |{x ∈ C : xj = Ajr}|, (6)

where xj denotes the jth dimension of x.

For a given symbol table of the data set, the frequency table
of each cluster is unique according to that symbol table. For
example, for the data set in Table 2, let (C, P) be a subspace
cluster, where C = {x1,x2,x3} and P = {1, 2, 3, 4}, if we
use the symbol table presented in Table 3, then the corre-
sponding frequency table for the subspace cluster (C, P) is
given in Table 4.

From the definition of frequency fjr in Equation (6), we
have the following equalities:

njX
r=1

fjr(C) = |C|, j = 1, 2, ..., d, (7)

0� 3 3 3 3 1 1
0 0 0 0 1 1

0 0 1 1

1A
Table 4: The frequency table computed from the symbol
table in Table 3.

for any subspace cluster (C,P).
We can now use the frequency table to simplify the formulas
of compactness and separation. Let C be a cluster with the
set P of dimensions associated, Tf (C) be its frequency table.
Since the square of the simple matching distance is equal to
itself and using Equation (7), after a simple manipulation,
we have X

x,y∈C

‖x − y‖2
P = |P | · |C|2 −

X
j∈P

‖fj(C)‖2, (8)

where fj(C) is defined in Equation (5) and ‖ · ‖ is the usual
Euclidean norm. Note that the same notation is used for
the Euclidean norm of a point in an Euclidean space and
for the matching distance (defined below equation (2)) of
two points in the original data space, this should be easily
distinguished from the context.

Thus from Equation (8), we obtain the following simplified
formulas of compactness and separation:

Cp(C, P) = 1 −

P
j∈P

‖fj(C)‖2

|P ||C|2
, (9)

Sp(C, R) =

8<: 1 −

P
j∈R

‖fj(C)‖2

|R||C|2
, if R 6= Φ;

1, if R = Φ.
(10)

3.2 Algorithm
We have defined the objective function (3), and introduced
a simple way to calculate this function. Our goal is to parti-
tion the data set into k non-overlapping groups such that the
function in Equation (3) is minimized. We now introduce
our algorithm.

In the first step of this algorithm, we need to initialize the
partition, i.e. given the number of clusters k, we need to par-
tition the data set into k non-overlapping groups. There are
many ways to do this. One way is to partition the data set
into k non-overlapping groups randomly, but this is not effi-
cient for the clustering task in the next steps. Another way,
that we shall take, is to compute the proximity matrix of
the data set, then choose k most dissimilar data points(See
Section 3.3) as seeds according to the proximity matrix, and
then assign the remaining data points to the nearest seed.
Since computing the proximity matrix for large data set is
impractical, we can first draw a sample(usually of small size)
from the data set, and then compute the proximity matrix
for the sample. We will discuss the initialization phase, in
Section 3.3 and Section 3.4, in detail.

After the initialization phase, we begin to optimize the par-
tition such that the objective function (3) is minimized. To
optimize the partition, the algorithm will move a point from
its current cluster to another cluster if the movement can de-
crease the objective function. In practice, the algorithm will
stop if there is no further change of cluster memberships. We
will discuss the optimization phase in Section 3.5 in detail.

Algorithm 3.1 The pseudo code of SUBCAD.

Require: D - Data Set, k - Number of Clusters;
Ensure: 2 ≤ k ≤ |D|;
1: if D is a large data set then
2: Draw a sample from D;
3: end if
4: Compute the proximity matrix from the whole data set

or the sample;
5: Pick k most dissimilar data points as seeds;
6: Assign the remaining data points to the nearest seed;
7: repeat
8: for i = 1 to |D| do
9: Let (Cl, Pl) be the subspace cluster that contains

xi;
10: for m = 1, m 6= l to k do
11: if Inequality (18) is true then
12: Move x from Cl to Cm;
13: Update subspaces Pl and Pm;
14: end if
15: end for
16: end for
17: until No further change of the cluster memberships;
18: Output results.

In summary, the algorithm consists of two phases: the ini-
tialization phase and the optimization phase. In the follow-
ing sections, we will discuss the criteria of moving a data
point from its current cluster to another cluster and the
criteria of determining the subspace associated with each
cluster.

3.3 The Initialization Phase
In the initialization phase, we initialize the partition for the
optimization. In partitioning clustering algorithms, the ini-
tial partition is very important. Good initial partition leads
to fast convergence of the algorithm. Some initialization
methods have been proposed in the literature of clustering,
such as cluster-based method [7], kd-tree based method [21].

Denote by k the number of clusters in this algorithm, we
first pick k most dissimilar data points as seeds, then we
assign the remaining data points to the nearest seed. To
make the algorithm clear, we introduce:

Definition 1. Let D be a data set, k be a positive integer
such that k ≤ |D|. We say that x1,x2, ..., xk ∈ D are k
most dissimilar data points of the data set D if the following
condition is satisfied

min
1≤r<s≤k

‖xr − xs‖ = max
E∈F

min
x,y∈E

‖x − y‖, (11)

where F is the class that contains all subsets E of D such
that |E| = k, i.e.

F = {E : E ⊆ D, |E| = k},

and ‖x − y‖ is the distance between x and y. For conve-
nience, we use X(k, D)(k ≤ |D|) to denote the set of k most
dissimilar data points of the data set D. �

Note that the set of k most dissimilar data points of a data
set is not unique if k < |D|, i.e. X(k, D) (k < |D|) is
not unique. For example, in the data set listed in Table 2,

let D = {x1,x2,x3,x4, x5} and k = 2, then according to
Definition 1, X(2, D) can be {x1,x4} or {x2,x4}. Of course,
if k = |D|, then X(|D|, D) = D is unique.

Since there are total

�
n
k

�
elements in F , when n is large,

it is impractical to enumerate all sets in F to find a set of k
most dissimilar data points. Thus we use an approximation
algorithm to find a set of k data points that is near the set
of k most dissimilar data points. The basic idea is to choose
k initial data points, then continuously replace the bad data
points with good ones until no further changes.

More specifically, let D = {x1,x2, ..., xn} be a data set
or a sample from a data set. First, we let X(k, D) be
{x1,x2, ..., xk}, let xr,xs(1 ≤ r < s ≤ k) be such that

‖xr − xs‖ = min
x,y∈X(k,D)

‖x − y‖. (12)

Secondly, for each of the data point x ∈ D\X(k, D), let

Sr = min
y∈X(k,D)\{xs}

‖x − y‖, (13)

Ss = min
y∈(X(k,D)\{xr})

‖x − y‖. (14)

Then if Sr > ‖xr − xs‖, we let X(k, D) ∪ {x}\{xs} replace
X(k, D); if Ss > ‖xr − xs‖, we let X(k, D) ∪ {x}\{xr}
replace X(k, D).

3.4 Sampling for large data sets
In the initialization phase, we need to select k seeds from
the data set. If the data set is very large, then to compute
the proximity matrix of the whole data set is impractical.
To make the algorithm scale to large data set, we will draw
samples from the original data set and choose seeds from the
samples. In this section, we will discuss sampling methods
for large data sets in the initialization phase.

Many algorithms for drawing a sample randomly from data
sets have been designed, such as density biased sampling [20],
random sampling with a reservoir [16; 23]. Also as for how
to choose the sample size, we can use Chernoff bounds [18;
12] to determine the sample size such that the sample con-
tains as least a certain amount data points from an arbitrary
cluster with a high probability.

Let Cb(k, n) be the minimum size of sample S such that
every cluster has more than ξ data points in the sample
with probability 1− δ, then Cb(k, n) can be computed from
the following equation [25; 12]:

Cb(k, n) = ξkρ + kρ log

�
1

δ

�
+ kρ

s�
2ξ + log

1

δ

�
log

1

δ
,

(15)
where ρ is given by

ρ =
n

k · |Cmin|
,

and Cmin is the smallest cluster in the partition.

Note that for a small data set, sampling is not necessary.
When sampling is necessary depends on the machine on
which the algorithm runs. But in general, we can determine
whether or not to draw a sample as follows. If n > Cb(k, n),
then we take sample of size Cb(k, n); if n < Cb(k, n), we
just use the whole data set to compute proximity matrix. If
n > Cb(k, n), from Equation (15) and notice that ρ ≥ 1, we

have

n > k

ξ + log

�
1

δ

�
+

s�
2ξ + log

1

δ

�
log

1

δ

!
. (16)

Thus, if inequality (16) is true, we draw samples of size
Cb(k, n) from the original data sets. We take ξ = 50 and
ρ = 0.01 for default values

3.5 Optimization Phase
In the optimization phase of the algorithm, we need to re-
assign the data points in order to minimize the objective
function (3) and update the subspaces associated with these
clusters whose memberships are changed.

Let (C1, P1), (C2, P2), ..., (Ck, Pk) be a partition of the data
set D, let x be a data point in the subspace cluster (Cl, Pl).
To achieve the membership changing rules, we use “exact
assignment test” [24] technique in our algorithm. We will
move x from subspace cluster (Cl, Pl) to another subspace
cluster (Cm, Pm) (m 6= l) if the resulted cost function de-
creases, i.e. if the following inequality is true:

kX
i=1

(Cp(Ci) + 1 − Sp(Ci)) >

kX
i=1,i6=l,m

Cp(Ci)

+ Cp(Cl − x) + 1 − Sp(Cl − x) + Cp(Cm + x)

+ 1 − Sp(Cm + x), (17)

where Cl − x means Cl\{x}, Cm + x means Cm ∪ {x}.
Inequality (17) is equivalent to

Cp(Cl) − Cp(Cl − x) − Sp(Cl) + Sp(Cl − x) >

−Cp(Cm) + Cp(Cm + x) + Sp(Cm) − Sp(Cm + x).(18)

Hence if Inequality (18) is true, the data point x will be
moved from Cl to Cm. After this movement, the sets of sub-
space dimensions Pl and Pm will of course be updated(See
Section 4).

Let the symbol table of the data set D be Ts, and let rj(j =
1, 2, ..., d) be the subscript such that xj = Ajrj

. Then the
frequency table of Cl −x is the same as the frequency table
of Cl except for the terms fjrj

(Cl − x) = fjrj
(Cl) − 1(j =

1, 2, ..., d); the frequency table of Cm + x is the same as
the frequency table of Cm except for the terms fjrj

(Cm +
x) = fjrj

(Cm) + 1. These relationships enable us to rewrite
Inequality (18) in a more compact form, omitted here due
to limitation of spaces.

4. DETERMINE SUBSPACES
Let (C, E) be a subspace cluster of a d-dimensional data set
D. In order to determine the set P of subspace dimensions
associated with C, we define an objective function whose
domain is all the subsets of Q = {1, 2, ..., d} as follows:

F (C,E) = Cp(C, E)+1−Sp(C,Q\E), Φ 6= E ⊆ Q, (19)

where Cp(C, E) and Sp(C, Q\E) are the compactness and
separation of cluster C under the subspace dimensions set
E.

Our general idea to determine the set P associated with clus-
ter C is to find a P such that the objective function defined
in Equation (19) is minimized. Also from Equation (8), if
P 6= Φ or P 6= Q, we can write the objective function in

Equation (19) as

F (C, E) = 1 −

P
j∈E

‖fj(C)‖2

|E||C|2
+

P
j∈Q\E

‖fj(C)‖2

|Q\E||C|2
, E ⊆ Q,

(20)
where R = Q\P .

We now establish some useful properties of the objective
function.

Theorem 1 (Condition of Constance). The objec-
tive function defined in Equation (19) is constant for any
subset E of Q if and only if

‖f1(C)‖ = ‖f2(C)‖ = · · · = ‖fd(C)‖. (21)

In addition, if the objective function is a constant, then it is
equal to 1.

¿From the definition of the objective function F (C, E), the
proof of the above theorem is straightforward and is thus
omitted. By Theorem 1, if the objective function is constant,
then the objective function is minimized at any subset of Q.
In this case, we define the subspace dimensions associated
with C to be Q. If the objective function is not constant,
then we define the subspace dimensions associated with C
to be the set P ⊆ Q that minimizes the objective function.
In fact, we can prove late that such a set P is unique if
the objective is not constant. Hence, we have the following
definition of subspace associated with each cluster.

Definition 2. Let C be a cluster, then the set P of sub-
space dimensions associated with C is define as follows:

1. If the objective function F (C,E) is constant for any
E ⊆ Q, then let P = Q;

2. If the objective function F (C,E) is not constant, then
P is defined as

P = arg max
E∈E

|E|, (22)

where E is defined as

E = {O : F (C, O) = min
E∈ℵ

F (C,E), O ∈ ℵ}, (23)

and ℵ is defined as

ℵ = {E : E ⊂ Q, E 6= Φ, E 6= Q}. (24)

Remark 1. ¿From Definition 2, the set P defined in Equa-
tion (22) is non-empty. Moreover, if the objective function
F (C, E) is not constant, then the set P is a true subset of
Q, i.e. P $ Q.

Below we will prove that if the objective function F (C, E)
defined in Equation (20) is not constant, then the set P
defined in Equation (22) is unique. To do this, we first
derive some properties of the set P in Equation (22).

Theorem 2. Let (C, P) be a subspace cluster of data set
D in a d-dimensional space(d > 2), let P be defined in Equa-
tion (22). Then

1. for a given r ∈ P , if there exists a s(1 ≤ s ≤ d) such
that ‖fs(C)‖ > ‖fr(C)‖, then s ∈ P ;

2. for a given r ∈ R, if there exists a s(1 ≤ s ≤ d) such
that ‖fs(C)‖ < ‖fr(C)‖, then s ∈ R, where R = Q\P .

Theorem 2 can be proved by way of contradiction. To prove
the first part, for example, suppose s /∈ P and let Pnew =
P ∪ {s}\{r}, Rnew = R ∪ {r}\{s}, then one can show that
F (C, Pnew) < F (C,P), a contradiction. A detailed proof
can be found in [10]

Let (C, P) be a subspace cluster, where P is defined in Equa-
tion (22). Then from Theorem 2, there exists no r, s(1 ≤
r, s ≤ d) such that r ∈ P, s ∈ R and ‖fr(C)‖ < ‖fs(C)‖.
Hence we have the following corollary:

Corollary 3 (Monotonicity). Let (C, P) be a sub-
space cluster of D, where P is the set of subspace dimensions
defined in Equation (22) and let Tf (C) be the frequency table
of C, then for any r ∈ P and s ∈ R(R = Q\P), we have

‖fr(C)‖ ≥ ‖fs(C)‖. (25)

Now we consider the case where there exist r ∈ P and s ∈ R
such that ‖fr(C)‖ = ‖fs(C)‖.

Theorem 4. Let (C, P) be a subspace cluster of d di-
mensional data set D(d > 2), where P is defined in Equa-
tion (22), let Tf (C) be the frequency table defined in Equa-
tion (4), let r, s(1 ≤ r, s ≤ d)be given so that ‖fs(C)‖ =
‖fr(C)‖. Then either r, s ∈ P or r, s ∈ R, i.e. r, s must be
in the same set of P or R, where R = Q\P .

Theorem 4 can be proved using a similar argument for The-
orem 2, details can be found in [10]. ¿From Corollary 3 and
Theorem 4, we have the following:

Corollary 5. Let (C, P) be a subspace cluster of D,
where P is the set of subspace dimensions defined in Equa-
tion (22), and let Tf (C) be the frequency table of C. If
the objective function F (C, E) is not constant, then for any
r ∈ P and s ∈ R(R = Q\P), we have

‖fr(C)‖ > ‖fs(C)‖. (26)

Now using Corollary 5, we can prove the uniqueness of the
set P defined in Equation (22).

Theorem 6 (Uniqueness of Subspace). Let F (C,E)
be the objective function defined in Equation (19) and let P
be the set defined in Equation (22). If the objective function
F (C, E) is not constant, then the set P is unique.

Also from the Corollary 5 and the Theorem 6, we have the
following theorem, based on which we can design a very fast
algorithm to find the set of subspace dimensions associated
with each cluster. The detailed proof of the following theo-
rem can also be found in [10].

Theorem 7 (Contiguity). Let (C, P) be a subspace
cluster of D, where P is the set of subspace dimensions de-
fined in Equation (22). Let Tf (C) be the frequency table of
C, and let i1, i2, ..., id be a combination of 1, 2, ..., d such that

‖fi1(C)‖ ≥ ‖fi2(C)‖ ≥ · · · ≥ ‖fid
(C)‖ .

Finally, let Gs be the set of subscripts defined as

Gs =
�
t : ‖fit(C)‖ 6=

fit+1
(C)
 , 1 ≤ t ≤ d − 1

	
. (27)

If the objective function defined in Equation (19) is not con-
stant, then the set of subspace dimensions P defined in Equa-
tion (22) must be one of the Pk’s(k = 1, 2, ..., |Gs|) defined
as follows:

Pk = {it : t = 1, 2, ..., gk}, k = 1, 2, ..., |Gs|, (28)

where g1 < g2 < · · · < g|Gs| are elements of Gs.

Based on Theorem 7, we can find the set of subspace dimen-
sions P for a cluster C very fast. There are totally 2d − 1
non-empty subsets of Q, it is impractical to find an optimal
P by enumerating these 2d − 1 subsets. Based on Theo-
rem 7, we can design a fast algorithm for determining the
set of subspace dimensions.

5. EXPERIMENTS
To evaluate the performance of the algorithm, we imple-
mented our algorithm on Sun Blade 1000 workstation using
GUN C++ compiler. In this section, we shall use experi-
mental results to show the clustering performance of SUB-
CAD.

5.1 Data sets
We chose not to run our experiments on synthetic datasets,
not only because synthetic data sets may not well repre-
sent real world data [13], but also because there is no well
established categorical data generation method. Therefore,
instead of generating synthetic data to validate the cluster-
ing algorithm we choose three real world data sets obtained
from UCI Machine Learning Repository [6]. All these data
sets have class labels assigned to the instances.

5.1.1 Soybean data
The soybean data set has 47 records each of which is de-
scribed by 35 attributes. Each record is labelled as one of
the 4 diseases: diaporthe stem rot, charcoal rot, rhizoctonia
root rot and phytophthora rot. Except for the phytoph-
thora rot which has 17 instances, all other diseases have 10
instances each. Since there are 14 attributes that have only
one category, we only selected other 21 attributes for the
purpose of clustering.

5.1.2 Wisconsin breast cancer data
The Wisconsin breast cancer data set has total 699 records,
each of which is described by 10 categorical values. There
are 16 records that have missing values. Since our algo-
rithms do not deal with missing values, we delete the 16
records from the data set and use the remaining 683 records
for testing.

5.1.3 Congressional voting data
The Congressional voting data set includes votes for each of
the U.S. House of Representatives Congressmen on the 16
key votes identified by the CQA. It has 435 instances(267
democrats, 168 republicans) and some of the instances have
missing values, we denote the missing value by “?” and treat
it as the same as other values.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
D 8 0 0 2
C 0 0 10 0
R 0 0 0 10
P 0 16 0 1

Table 5: The misclassification matrix of the result obtained
by applying SUBCAD to the soybean data, where D,C,R,P
denote four different diseases.

5.2 Clustering results
To measure the qualities of clustering results of our cluster-
ing algorithms, we use clustering accuracy measure r defined
as follows [13]:

r =

kP
i=1

ai

n
, (29)

where ai is the number of instances occurring in both clus-
ter i and its corresponding class, and n is the number of
instances in the data set.
Table 5 shows the misclassification matrix of the cluster-
ing result by applying our algorithm to the soybean data.
According to the clustering accuracy measure r defined in
Equation (29), the clustering accuracy is

ra =
8 + 10 + 10 + 16

47
= 0.9362. (30)

Clusters Sets of Subspace Dimensions
Cluster 1 Q\{1}
Cluster 2 Q\{1, 6}
Cluster 3 Q\{1, 6, 10}
Cluster 4 Q\{1, 6}

Table 6: The set of subspace dimensions associated with
each cluster for the soybean data, where Q = {1, 2, ..., 21}.

Table 6 gives the subspace dimensions associated with each
cluster in Table 5. Cluster 1 is formed in a 20-dimensional
space, Cluster 2 and Cluster 4 are formed in the same sub-
space which is 19-dimensional, Cluster 3 is formed in a 18-
dimensional subspace. The result shows that the clusters
are formed almost in the whole space. Hence if apply con-
ventional clustering algorithms(i.e. not subspace clustering
algorithms), such as k-Modes[13], to the soybean data, one
will get almost the same results.

Table 7 shows the misclassification matrix of the clustering
result by applying our algorithm to the Wisconsin breast
cancer data. Similarly, the clustering accuracy is

rb =
440 + 158

683
= 0.8755. (31)

Cluster 1 Cluster 2
Benign 4 440

Malignant 158 81

Table 7: The misclassification matrix of the result obtained
by applying SUBCAD to the Wisconsin breast cancer data.

Clusters Sets of Subspace Dimensions
Cluster 1 {7}
Cluster 2 Q\{1}

Table 8: Sets of subspace dimensions associated with each
cluster for the Wisconsin breast cancer data, where Q =
{1, 2, ..., 10}.

Table 8 gives the subspace dimensions associated with each
cluster of the Wisconsin breast data. One cluster is formed
in a 1-dimensional subspace, while the other one is formed in

a 9-dimensional subspace. Under our objective function for
determining subspaces, one cluster tends to have low dimen-
sionality while the other tends to have high dimensionality.
Table 9 shows the misclassification matrix of the clustering
result by applying our algorithm to the congressional voting
data. Similarly, the clustering accuracy is

rc =
253 + 147

435
= 0.9195. (32)

Cluster 1 Cluster 2
democrat 14 253
republican 147 21

Table 9: The misclassification matrix of the result obtained
by applying SUBCAD to the congressional voting data.

Clusters Sets of Subspace Dimensions
Cluster 1 Q\{2, 16}
Cluster 2 {3, 4}

Table 10: Sets of subspace dimensions associated with
each cluster for the congressional voting data, where Q =
{1, 2, ..., 16}.

The subspace dimensions associated with the clusters of con-
gressional voting data is given in Table 10. Similar to the
clustering results of Wisconsin breast cancer data, one clus-
ter of the congressional voting data has a low dimensionality
while another has a high dimensionality.

6. CONCLUSION
In this paper we presented SUBCAD, an algorithm for sub-
space clustering high dimensional categorical data. We treat
both the process of clustering and the process of determin-
ing the subspaces of clusters as a process of optimizing a
certain cost function. The idea of optimization in deter-
mining the subspace of each cluster enables us to rapidly
identify the subspaces in which the clusters are embedded.
We tested the algorithm using various real world data sets
from UCI Machine Learning Repository [6], with very good
clustering accuracy. It should be mentioned that for some
data sets, the algorithm tends to find some clusters in high-
dimensional subspaces in conjunction with other clusters
in low-dimensional subspaces. The rate of convergence de-
pends on the size of the date set, as shown in our simulation
on the Connect-4 Database (67557 records, each of which
is described by 42 attributes). Furthermore, SUBCAD re-
quires the number of clusters as an input parameter, and
hence how to incorporate the existing methods of selecting
this parameter into SUBCAD remains an interesting and
challenging problem.

Acknowledgements
This research was partially supported by NSERC(Natural
Sciences and Engineering Research Council of Canada), by
CRC(Canada Research Chairs) Program, and by Generation
5.

7. REFERENCES

[1] C. Aggarwal, J. Wolf, P. Yu, C. Procopiuc, and J. Park.
Fast algorithms for projected clustering. In Proceedings
of the 1999 ACM SIGMOD international conference on
Management of data, pages 61–72. ACM Press, 1999.

[2] C. Aggarwal and P. Yu. Finding generalized projected
clusters in high dimensional spaces. In W. Chen, J. F.
Naughton, and P. A. Bernstein, editors, Proceedings of
the 2000 ACM SIGMOD International Conference on
Management of Data, May 16-18, 2000, Dallas, Texas,
USA, volume 29, pages 70–81. ACM, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. Automatic subspace clustering of high dimensional
data for data mining applications. In SIGMOD Record
ACM Special Interest Group on Management of Data,
pages 94–105, 1998.

[4] M. Anderberg. Cluster analysis for applications. Aca-
demic Press, New York, 1973.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is “nearest neighbor” meaningful? In C. Beeri
and P. Buneman, editors, Database Theory - ICDT ’99,
7th International Conference, Jerusalem,Israel, Jan-
uary 10-12, 1999, Proceedings, volume 1540 of Lecture
Notes in Computer Science, pages 217–235. Springer,
1999.

[6] C. Blake and C. Merz. UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/
∼mlearn/MLRepository.html.

[7] P. Bradley and U. Fayyad. Refining initial points for
K-Means clustering. In Proc. 15th International Conf.
on Machine Learning, pages 91–99. Morgan Kaufmann,
San Francisco, CA, 1998.

[8] Y. Cao and J. Wu. Projective ART for clustering
data sets in high dimensional spaces. Neural Networks,
15(1):105–120, January 2002.

[9] C. Cheng, A. Fu, and Y. Zhang. Entropy-based sub-
space clustering for mining numerical data. In Proceed-
ings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 84–93.
ACM Press, 1999.

[10] G. Gan. Subspace clustering for high dimendional cate-
gorical data. Master’s thesis, Department of Mathemat-
ics and Statistics, York University, Toronto, Canada,
October 2003.

[11] S. Goil, H. Nagesh, and A. Choudhary. MAFIA: Ef-
ficient and scalable subspace clustering for very large
data sets. Technical Report CPDC-TR-9906-010, Cen-
ter for Parallel and Distributed Computing, Depart-
ment of Electrical & Computer Engineering, North-
western University, June 1999.

[12] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient
clustering algorithm for large databases. In Proceedings
of the 1998 ACM SIGMOD international conference on
Management of data, pages 73–84. ACM Press, 1998.

[13] Z. Huang. Extensions to the k-means algorithm for clus-
tering large data sets with categorical values. Data Min-
ing and Knowledge Discovery, 2:283–304, 1998.

[14] A. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall,Englewood Cliffs, New Jersey, 1988.

[15] L. Kaufman and P. Rousseeuw. Finding Groups in
Data–An Introduction to Cluster Analysis. Wiley series
in probability and mathematical statistics. John Wiley
& Sons, Inc., New York, 1990.

[16] K. Li. Reservoir-sampling algorithms of time complex-
ity o(n(1 + log(n/n))). ACM Transactions on Mathe-
matical Software (TOMS), 20(4):481–493, 1994.

[17] B. Liu, Y. Xia, and P. Yu. Clustering through decision
tree construction. In Proceedings of the ninth interna-
tional conference on Information and knowledge man-
agement, pages 20–29, McLean, Virginia, USA, 2000.
ACM Press.

[18] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, New York, 1995.

[19] H. Nagesh, S. Goil, and A. Choudhary. A scalable paral-
lel subspace clustering algorithm for massive data sets.
In 2000 International Conference on Parallel Process-
ing (ICPP’00), pages 477–486, Washington - Brussels -
Tokyo, August 2000. IEEE.

[20] C. Palmer and C. Faloutsos. Density biased sampling:
an improved method for data mining and clustering. In
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 82–92. ACM
Press, 2000.

[21] D. Pelleg and A. Moore. Accelerating exact k-means
algorithms with geometric reasoning. In Proceedings of
the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 277–281.
ACM Press, 1999.

[22] C. Procopiuc, M. Jones, P. Agarwal, and T. Murali.
A monte carlo algorithm for fast projective cluster-
ing. In Proceedings of the 2002 ACM SIGMOD interna-
tional conference on Management of data, pages 418–
427. ACM Press, 2002.

[23] J. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS),
11(1):37–57, 1985.

[24] D. Wishart. k-means clustering with outlier detection,
mixed variables and missing values. In M. Schwaiger
and O. Opitz, editors, Exploratory Data Analysis in
Empirical Research, pages 216–226. Springer, 2002.

[25] K. Woo and J. Lee. FINDIT: a fast and intelligent sub-
space clustering algorithm using dimension voting. PhD
thesis, Korea Advanced Institue of Science and Tech-
nology, Department of Electrical Engineering and Com-
puter Science, 2002.

[26] J. Yang, W. Wang, H. Wang, and P. Yu. δ-clusters: cap-
turing subspace correlation in a large data set. Data En-
gineering, 2002. Proceedings. 18th International Con-
ference on, pages 517 –528, 26 Feb.-1 March 2002.

[27] K. Yeung and W. Ruzzo. Principal component analy-
sis for clustering gene expression data. Bioinformatics,
17(9):763–774, September 2001.

