Problems

Problems contain propositions from Book I of Eu-clid's *Elements*. In each instance, prove the indicated result.

1.

Proposition 6. If two angles of a triangle are congruent with one another, then the sides opposite these angles will also be congruent. [Hint: Let ABC be a triangle in which /CAB = /CBA. If $AC \neq BC$, say, AC > BC, then choose a point D on AC such that AD = BC.]

3.

Proposition 17. In a triangle, the sum of any two angles is less than two right angles. [Hint: In $\triangle ABC$, extend segment BC to a point D and use the exterior angle theorem.]

C

2.

Proposition 15. If two lines cut one another, then they make vertical angles that are equal. [Hint: Appeal to Proposition 13, which says that if a ray is drawn from a point on a line, then the sum of the pair of supplementary angles formed is equal to two right angles.]

4. Proposition 18. If one side of a triangle is greater than a second side, then the angle opposite the first is greater than the angle opposite the second. [Hint: In $\triangle ABC$, for AC > AB, choose a point D on AC such that AD = AB; use the fact that $\angle ADB$ is an exterior angle of $\triangle BCD$.]

5. Proposition 26. Two triangles are congruent if they have one side and two adjacent angles of one congruent with a side and two adjacent angles of the other. [Hint: Let $\triangle ABC$ and $\triangle DEF$ be such that $\angle B = \angle E$, $\angle C = \angle F$, and BC = EF. If $AB \neq DE$, say AB > DE, choose a point G on AB for which BG = ED.]

Solutions to Euclid Problems

- 1. Triangles DAB and CBA are congruent by the side-angle-side theorem, hence, $\angle DBA = \angle CAB = \angle CBA$, which contradicts Common Notion 5.
- 2. $\alpha + \beta = 180^{\circ} = \beta + \gamma$ implies that $\alpha = \gamma$.
- 3. Because $\angle ABC < \angle ACD$ by the exterior angle theorem, it follows that $\angle ABC + \angle ACB < \angle ACD + \angle ACB = 180^{\circ}$.
- **4.** Triangle ABD is isosceles, hence $\angle ABD = \angle ADB$. Applying the exterior angle theorem, $\angle ABC > \angle ABD = \angle ADB > \angle ACB$.
- 5. Triangles GBC and DEF are congruent by the side-angle-side theorem; hence, $\angle C = \angle F = \angle BCG$, which contradicts Common Notion 5.

/

/