
QUICK GUIDE TO POSITIVE CONES OF NUMERICAL CLASSES

MIHAI FULGER AND BRIAN LEHMANN

Throughout X and Y are projective varieties over an algebraically closed field of arbitrary characteristic,
with dimX = n, and π : X → Y is a morphism.

1. Cycles

Let Zk(X) denote the group of k-cycles on X with R-coefficients. Any subscheme Z ⊂ X of dimension
k has a fundamental cycle denoted [Z] ∈ Zk(X) defined as in [4, §1.5]. If Z =

∑
aiZi and Zi ⊂ X are

subvarieties, the support of Z is |Z| := ∪iZi.
Features of cycle groups:

• Proper pushforwards ([4, §1.4]), that measure degrees of field extensions.
• Flat pullbacks ([4, §1.7]), that may encode scheme structure.
• If Z and V are cycles that meet properly (they have the expected dimension of) intersection) and the support

of either one of them is regularly embedded in X, then then one has a well-defined cycle Z · V
determined by normal cones in [4, §6.1] and revisited in [4, §7]. If Z and V are effective (only
nonnegative coefficients), then Z · V is also effective.

• The same happens if neither of Z or V is regularly embedded, but the ambient space is smooth. See
[4, §8]. In this case Z × V ∩∆ ⊂ X ×X identifies with Z ∩ V , and the diagonal is regularly embedded.

2. Chow groups

The Chow groups CHk(X) are defined as the quotient of Zk(X) modulo rational equivalence. There are
two equivalent definitions for rational equivalence. See [4, §1.3 and §1.6].

Features of Chow groups:

• Proper pushforward (they pass to rational equivalence from pushforwards of cycles). See [4, §1.4].
• Flat pullbacks (again these are induced by cycle flat pullbacks). See [4, §1.7].
• A restriction sequence: If X is closed in Y with complement U , then there exist exact sequences
CHk(X)→ CHk(Y )→ CHk(U)→ 0. See [4, §1.8].

• Pullbacks by regular embeddings and more generally by l.c.i maps. See [4, §6.1 and §6.6]. These are

constructed by deformation to the normal cone, not by moving lemmas.

• Pullbacks from smooth varieties. See [4, §8]. These again use that the diagonal is l.c.i in X ×X.

• There exist refined Gysin pullbacks in the previous two settings which also keep track of supports,
not just of cycle classes in an ambient space.

• When X is smooth, then by denoting CHk(X) = CHn−k(X), we get a graded ring structure on
CH∗(X). See [4, §8]. This uses that the diagonal map X ↪→ X ×X is a regular embedding.

• There are Chern class actions on Chow groups: If E is a vector bundle, then for each k and m

there exists a linear function CHm(X)
ck(E)∩−→ CHm−k(X). See [4, §3.2]. These satisfy the following

properties:
i) c0(E) ∩ α = α.
ii) Commutativity: ck(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ck(E) ∩ α).

iii) Projection formula: π∗(ck(π∗E) ∩ α) = ck(E) ∩ π∗α.
iv) Naturality for flat maps: If π is flat, then π∗(ck(E) ∩ α) = ck(π∗E) ∩ π∗α.
v) If E is a line bundle, then c1(E) ∩ [X] is the image in the class group of the Cartier divisor

associated to E. See [4, §2].
vi) If E has rank r and s is a global section that vanishes along a subset V (s) of codimension exactly

r, then [V (s)] = cr(E) ∩ [X].
The Chern class operations are also compatible with the l.c.i pullbacks, intersections on smooth
varieties, or Gysin maps.

1



2 MIHAI FULGER AND BRIAN LEHMANN

3. Numerical equivalence

3.1. Smooth case. We have an intersection pairing CHk(X) × CHk(X) → R determined by the ring
structure on CH∗(X) and by the natural point counting degree function deg : CH0(X) → R (For the degree

to respect rational equivalence, we need X to be proper). Then one defines the numerical groups Nk(X) by quotienting
CHk(X) by the kernel of this pairing and similarly Nk(X) = Nn−k(X). This induces a perfect pairing
Nk(X)×Nk(X)→ R which proves that Nk(X) ' (Nk(X))∨.

3.2. Singular case. When X is singular, we do not have an intersection pairing. Instead we can use the
Chern class action. Following [4, §19], we say that a k-cycle Z is numerically trivial, and denote Z ≡ 0, if

deg(P ∩ [Z]Chow) = 0

for any weight k polynomial P in Chern classes of maybe several vector bundles on X (e.g. c31(E)−c1(F )c2(G)
is a Chern polynomial of weight 3). A Chern polynomial is naturally seen as an operator on Chow groups using the linearity and

commutativity of Chern class actions. The numerical groups are the quotients Nk(X) = CHk(X)/ ≡.
The dual numerical groups Nk(X) := (Nk(X))∨ are no longer isomorphic to Nn−k(X). They can be

defined also as weight k Chern polynomials P modulo those that verify deg(P ∩α) = 0 for any α ∈ CHk(X).
Features of the numerical groups Nk(X):

• They are finite dimensional. See [4, Example 19.1.4].
• They admit proper pushforwards (induced from those defined for cycles).
• Caution: It is not known whether flat pullbacks descend from CHk to Nk.
• They admit l.c.i pullbacks. See [4, Example 19.2.3].
• N0(X) and Nn(X) are both isomorphic to R.

Features of the dual numerical groups Nk(X) := (Nk(X))∨:

• They admit proper pullbacks (dual to the proper pushforwards for numerical groups).
• Multiplication of polynomials induces a graded ring structure on N∗(X).
• The Chern class actions induce linear maps Nk(X)×Nm(X)→ Nm−k(X) that we continue to denote
P ∩ α, or P · α.

• From the above there exist a “cyclification” map P 7→ P ∩ [X] : Nk(X)→ Nn−k(X).
• The cyclification N1(X) → Nn−1(X) is injective (see [4, Example 19.3.3]). Dually Nn−1(X) →
N1(X) is onto.

• More generally N∗(X) is a module over N∗(X).
• Projection formula: π∗(π

∗P ∩ α) = P ∩ π∗α for any P ∈ Nk(Y ) and α ∈ Nm(X).
• The cap pairings are natural whenever there exist pullbacks for numerical groups.
• There exists a map ch : K0(X)R → N∗(X) from the K-theory of vector bundles on X that sends a

bundle E to its Chern character [4, Example 3.2.3]. This is a ring morphism (the operations on K0(X)R are

induced by direct sums and tensor products of bundles).
• When X is smooth, ch( ) ∩ [X] is surjective onto Nn−k(X) (see [4, Example 15.2.16.(b)]). This implies

that the singular definition agrees with the smooth one in the smooth case.

4. Positive cones in Nk(X)

The numerical group is the natural ambient space for any positivity notion that one expects would be
preserved by pushforwards.

4.1. The pseudoeffective cone. The closure of the cone generated by numerical classes of effective k-cycles
is the pseudoeffective cone Effk(X). Its interior is the big cone.

Features of the pseudoeffective cone:

• Effk(X) generates Nk(X).
• Effk(X) is a pointed cone (it does not contain lines, only half-lines).
• π∗ Effk(X) ⊆ Effk(Y ). If π is surjective, then equality holds for psef cones, and also for big cones.
• If π is flat of relative dimension d and π∗ exists (e.g. π is smooth or Y is smooth), then π∗ Effk(Y ) ⊂

Effk+d(X).
• If h ∈ N1(X) is the class of an ample divisor, then hn−k ∩ [X] is big, i.e. in the interior of Effk(X).

The same is true of any complete intersection of possibly different ample divisor classes.
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• For any α ∈ Effk(X) we can define its degree degh(α) := hk ∩ α. We have that α = 0 if and only if
degh(α) = 0.

• There exists a norm | · | on Nk(X) such that |α| = degh(α) for any α ∈ Effk(X).
• The effective cone of numerical Cartier classes Eff(X) is a subcone of Effn−1(X). If X is normal,

then Eff(X) = N1(X) ∩ Effn−1(X) ⊂ Nn−1(X).

• If P ∈ PLk(X) is pliant or P ∈ BPFk (see below for both), then P ∩ Effm k(X) ⊂ Effm−k(X). In
particular the intersection between a psef class and a nef divisor is a psef class.

• [5] introduced a continuous function mob : Nk(X)→ R called mobility such that
i) mob(α) > 0 if and only if α is a big class (i.e. interior to Effk(X)).
ii) mob is homogeneous of degree n

n−k .

iii) If X is smooth and δ ∈ Eff(X) ⊂ N1(X), then mob(α) = vol(α), with the latter being the
classical volume of a divisor.

iv) The mobility of a class α measures the asymptotic growth of the mobility count (defined below)
of multiples of α.

Many of the statements above are nontrivial for pseudoeffective classes that are not effective.

Definition 4.1 (Families of cycles). A family of k cycles on X is a proper generically equidimensional
morphism p : U → W of relative dimension k, where W is an irreducible quasiprojective variety, and U is a
closed subset of W ×X, such that p is the restriction of the first projection. There is a well-defined numerical
class for the fundamental cycle of the general fiber of p. We denote this class by [p]. We can easily modify
the definition to include the case when U is a subscheme, or a cycle in W ×X.

Definition 4.2 (Mobility count). The mobility count of p is the maximal integer m such that for every m
(very) general points of X there exists a cycle Z in the family p that contains them. The mobility count of
a class α is the maximal mobility count among all families p with [p] = α. We denote it by mc(α).

Then mob(α) := lim supm→∞
mc(mα)

m
n

n−k /n!

Motivation: Working with families is a substitute for working with linear series which no longer exist in
any relevant way.

4.2. The movable cone. Intuitively speaking, the movable classes are represented by cycles that cover X
without always having a component in a fixed proper subset of X.

If p : U → W is a family of k-cycles on X and U is irreducible and the second projection s : U → X is
dominant, we say that p is strongly movable, and that [p] is a strongly movable class represented by the family
p. If U is reducible, but every irreducible component still dominates X, we say that p is strictly movable.

The closure of the cone in Nk(X) generated by strongly (or strictly) movable classes is called the movable
cone Movk(X).

Features of the movable cone:

• It generates Nk(X).
• It is pointed.
• Complete intersections are in the interior of Movk(X).
• If π is surjective, then π∗Movk(X) = Movk(Y ).
• If π is flat of relative dimension d and p is a strongly or strictly movable family, then the fiber product
π∗p is strictly movable. Additionally if π∗ exists for numerical groups (e.g. π smooth, or Y smooth),
then π∗Movk(Y ) ⊂ Movk+d(X).

• If P is pliant or bpf (see below), then P ∩Movm(X) ⊂ Movm−k(X). This holds for example when
P is an intersection of nef divisor classes.

• If δ ∈ Eff(X) ⊂ N1(X) is a pseudoeffective Cartier divisor class, then δ ∩Movk(X) ⊂ Effk−1(X).
• If δ is a big Cartier divisor class, and α ∈ Movk(X), then α = 0 if and only if δ ∩ α = 0.
• Movable Cartier classes (limits of basepoint free classes in codimension one) are in Movn−1(X).
• If X is smooth, then N1(X) ∩Movn−1(X) = Mov(X).
• By [1] Any α ∈ Effk(X) can be written as α = P +N , where P ∈ Movk(X), and N ∈ Effk(X), such

that mob(α) = mob(P ). This coincides with the Nakayama σ-decomposition of Cartier divisors on
smooth varieties, which is a suitable higher-dimensional generalization of the Zariski decomposition
of divisors on surfaces.
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• Except for divisor classes on smooth varieties, it is unknown whether the decomposition is unique.
• It is conjectured that if α ∈ Effk(X) is extremal and not movable, so that α = 0 + N is the unique Zariski

decomposition, then there exists a proper subvariety Z ( X with inclusion map ı and β ∈ Effk(Z) such
that ı∗β = N = α. When α is a Cartier divisor class on a smooth variety, then this would be the
equivalent of N being effective.

Motivation: Statements about psef classes tend to be easier for movable classes, because morally speaking
we can move these away from “special” subvarieties of X. Via the conjecture that extremal negative parts
are pushed from proper closed subvarieties, one would then hope to reduce to the movable case by induction
using Zariski decompositions. This strategy is exploited in [2].

There is hope that movable classes are birational objects. Unfortunately even if π is a birational morphism,
and p is a strongly movable family on Y , then it is not π∗p that gives a strongly (or even strictly) movable
family on X (the numerical class π∗[p] could potentially even fail to be psef), but the strict transform of p,
and taking strict transforms is not a numerical operation.

N.B.: In some cases it is useful to work with alternate definitions of movability. One could avoid families
altogether and say that a class is (weakly) movable if it is a limit of classes of cycles Zi such that for each
(reducible) divisor D ⊂ X, infinitely many of the Zi’s meet D properly (i.e. they have no components in D). With
this definition, at least for extremal classes α one has that either α is (weakly) movable, or α is pushed from
a psef class on a subvariety of X. This is good for some questions requiring only positivity of intersections,
but it allows only few geometric arguments for lack of any obvious finiteness/boundedness that was provided
by working with families.

4.3. The basepoint free cone. If W is a quasiprojective variety, and p : U → W is proper, with general
equidimensional fiber of dimension k, and s : U → X is flat (not necessarily proper), we say that p is a
basepoint free family. A general cycle theoretic fiber Uw of p has proper support and determines a well
defined numerical class on X by pushforward (from its support, not from U , because s may fail to be proper). We may
denote this class by [s(p)] and call it basepoint free.

The basepointfree cone BPFk(X) ⊂ Nk(X) is the closure of the cone generated by classes [s(p)] for
basepoint free families p.

An important distinction to note here is that basepoint free families are not necessarily families of cycles
on X, in that we do not require that U lives on W ×X.

Features of the bpf cone:

• If X is smooth, then BPFk(X) generates Nk(X).
• If Z ⊂ X is a closed subset, and p : U → W is a basepoint free family, then for general w ∈ W , the

intersection Z ∩ s(Uw) has the expected dimension or less.
• If X is smooth in the previous point, then Z and s(Uw) meet properly.

• If X is smooth, then BPFk(X) ⊂ Upsefk(X). (The universally pseudoeffective cone is defined below).
• Bpf is stable under flat pushforward. If π : X → Y is flat, and p : U → W is a bpf family on
X, with evaluation map s : U → X, then it is also bpf on Y with evaluation map s′ := π ◦ s, and
π∗[s(p)] = [s′(p)].

• Bpf is preserved by pullback from a smooth base. If Y is smooth and α ∈ BPFk(Y ), then
π∗α ∩ [X] ∈ BPFn−k(X).

• If p : U → W is a strongly movable family of cycles on Y , and s : U → Y denotes the second
projection, and π : X → Y is a proper birational morphism that flattens s to s′ : U ′ → X, then the
induced p′ : U ′ →W is a basepoint free family on X.

• If π is dominant, then π∗ BPFk(X) ⊂ Movk(Y ).

• PLk(X) ∩ [X] ⊂ BPFn−k(X). (The pliant cone is defined below.)

Motivation: The preservation under flat pushforward, and the flattening trick to transform strictly movable
families into basepoint free ones advertise the BPF cone as a versatile tool.

N.B.: Basepoint freeness seems to be an awkward condition in Nk(X). It is not preserved by proper
pushforward, and despite its definition as a cone in Nk(X), it is used mostly when X is smooth for intersection
theoretic purposes, so it is best behaved as a cone in Nk(X) (when X is smooth).
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One could find purely numerical definitions by asking only that α is bpf if it is a limit of classes of cycles
Zi such that for any subvariety T ⊂ X, infinitely many of the Zi have at most the expected dimension of
intersection with T . Again this retains the intersection theoretic positivity, but loses geometry.

June Huh conjectures that ifX is smooth, and α ∈ Effn−k(X)∩Nefk(X) (intersection of subsets ofNk(X) = Nn−k(X),

not a cap pairing), then α is basepoint free in this weaker sense.

5. Cones in Nk(X)

The dual numerical group is the natural setting for positivity notions that are preserved by proper pull-
backs.

5.1. The nef cone. Via the duality pairing Nk(X) × Nk(X) → R, the nef cone Nefk(X) ⊂ Nk(X) is the
dual of Effk(X) ⊂ Nk(X).

Features of the nef cone:

• Nefk(X) generates Nk(X).

• Nefk(X) is pointed.

• Nefk(X) contains complete intersections hk in its interior. Here h ∈ N1(X) is ample.

• π∗Nefk(Y ) ⊆ Nefk(X).
• If π is dominant, then π∗α is nef if and only if α is nef.
• If h1, . . . , hk are nef divisor classes, then h1 · . . . · hk ∈ Nefk(X).
• Caution: Debarre, Ein, Lazarsfeld, and Voisin construct examples of nef classes of codimension two

whose intersection product is not nef. They also construct nef classes that are not pseudoeffective.
This shows that the nice properties of nef divisors do not carry over to higher codimension classes in
general.

• The nef cone contains all the other cones in this section. It also contains the bpf cone when X is
smooth.

• If X is smooth, then Nefn−1(X) = Mov1(X). This is BDPP.

5.2. The pliant cone. If E is a globally generated vector bundle, then there exists an induced Gauss map
E → G to some Grassmann variety such that E is the pullback of the universal quotient bundle Q (still
a globally generated bundle) on G. Then the Chern and more generally the Schur classes ([4, §14.5] gives a

determinental formula for these in terms of the Chern classes) of E are obtained by pulling back the classes of Q, which are
represented by (effective and even irreducible) Schubert cycles on G.

The pliant cone PLk(X) ⊂ Nk(X) is the closure of the cone generated by monomials in Schur classes of
maybe different globally generated bundles on X.

Features of the pliant cone:

• PLk(X) generates Nk(X). This is one of the few results that uses the projectivity of X, as opposed to just properness.

• PLk(X) is pointed.

• Complete intersections of ample divisor classes are in the interior of PLk(X). This is actually the result that

proves the similar ones listed before.
• PL1(X) = Nef1(X).

• PLk(X) ∩ Effm(X) ⊂ Effm−k(X) by [4, Example 12.1.7].
• The pliant cone is contained in any positive cone in this section, and its pairing with [X] is contained

in any positive cone in the previous section.
• The pliant cone is preserved by pullbacks.
• If G is a Grassmann variety of dimension g, then Effk(G) = Movk(G) = BPFk(G) = Nefg−k(X) =

PLg−k(X) = Upsefg−k(X).

Motivation: The nef cone of Cartier divisor classes is the closure of the cone generated by globally generated
line bundles. With this perspective, one can at least approximate nef divisor classes by geometric objects
(divisor classes obtained by pulling back hyperplanes from projective spaces).

In higher codimension, one could try to do something similar by using complete intersection of globally
generated divisors, but these are not sufficient to generate Nk(X). For example N2(G(2, 4)) has dimension
2, but N1(G(2, 4)) is of dimension 1, and the same is true of the span of complete intersections. Instead we
pullback and intersect Schubert cycles from Grassmannians. These satisfy almost every positivity property
one could think of, since Grassmannians are homogeneous spaces, and then Kleiman’s Lemma applies.
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As mentioned before, working with the pliant cone has allowed us to prove that complete intersections are
in the interior of the nef cone, which is a key result for many of the features of the pseudoeffective cone.

N.B.: The many positivity properties of the pliant cone make it very rigid. The only property that we do
not know for the pliant cone is whether π∗α ∈ PLk(X) implies that α ∈ PLk(Y ) when π is dominant, a
property that is verified by nef divisors, and by nef classes in general. Usually the pliant cone is also very
hard to compute, except when we can show that it is equal to one of the other cones, and then we only need
to construct sufficiently many pliant classes instead of describing all of them directly.

5.3. The universally pseudoeffective cone. We say that α ∈ Nk(X) is universally pseudoeffective if
f∗α ∩ [Z] ∈ Eff∗(Z) for any morphism of projective varieties f : Z → X. The cone generated by all such α

is denoted Upsefk(X).
Features of the universally pseudoeffective cone:

• We have PLk(X) ⊆ Upsefk(X) ⊆ Nefk(X). When X is smooth, we also have PLk(X) ⊂ BPFk(X) ⊂
Upsefk(X) ⊂ Nefk(X).

• In particular Upsefk(X) generates Nk(X) and is pointed.
• It is preserved by pullbacks.
• Upsef1(X) = Nef1(X).

• In characteristic zero, to test if α ∈ Upsefk(X), it is enough to check that its pullbacks via maps
f that are birational onto their image (which may be a proper subset of X) are pseudoeffective. In arbi-
trary characteristic, one should replace birational by generically finite, or prove the existence of resolutions of

singularities.

• If X is smooth spherical, e.g. smooth toric, then Upsefk(X) = Nefk(X) ⊂ Effn−k(X).
• At least over C, if X is smooth, then Upsefn−1(X) = Nefn−1(X) = Mov1(X).

Motivation: The definition of the universally pseudoeffective cone mimics Kleiman’s criterion for nefness.
The hope is to show that it is equal to the bpf or pliant cone.

N.B.: At the moment we know very little about this cone. The issue is that the definition is intersection
theoretic, and leaves little room for geometric arguments.

6. Questions

Question 6.1. If E is a nef (or ample, meaning that OP(E)(1) is nef or ample) vector bundle of rank r > 1 on (smooth)
projective X, is it true that ck(E) ∩ [X] is pseudoeffective?

The answer is known to be yes in the following cases:

• k ∈ {0, 1, n− 1, n}, because the Chern classes are nef (see below).
• When E is globally generated (because then the Chern classes are pliant).
• When E is a split extension of nef line bundles.
• When X is such that Nefk(X) ∩ [X] ⊂ Effn−k(X).

Quite generally it is known that ck(E) ∈ Nefk(X). This is due to a deep result of Bloch–Gieseker. However
the DELV examples of nef non-psef classes suggest that the answer to this question might be no.

Even for ample bundles, the issue is that ck1(E) weighs heavier in ck(SmE) than ck(E) as m grows, and so
the global generation of SmE is not helpful. The “splitting principle” is also not an appropriate approach,
because in Algebraic Geometry it exhibits a pullback of E as a usually nonsplit extension of line bundles,
and then only one of them (the last one on the right) needs to be positive.

Question 6.2. Is it true that any variety of dimension at least 4 is birational to one that supports nef
non-psef classes?

One expects that smooth varieties where Nefk(X) 6⊂ Effn−k(X) abound, but only the DELV examples on
abelian varieties are known at the moment.

Question 6.3. Is it true that if X is smooth then Effn−k(X) ∩ Nefk(X) is one of the cones BPFk(X), or

Upsefk(X), or the weaker BPFk where we only ask that a class α is approximated by classes of cycles that
meet any subvariety properly (one different sequence for each subvariety)?

These seem optimistic.
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Question 6.4. Is it true that if X is smooth, then Upsefk(X) ⊂ Movn−k(X)?

Question 6.5. If X is smooth, is it true that α ∈ Upsefk(X) if and only if α · β ∈ Effm−k(X) for any
β ∈ Effm(X)?

How about if α|Z ∩ [Z] ∈ Eff∗(Z) for any subvariety Z ⊂ X? (Asking that α restricts to a psef class on Z is a stronger

condition than asking that the pushforward to X of the restriction to Z is psef).

Question 6.6. Is it true that if π : X → Y is surjective, and π∗α is pliant, then α is also pliant?

Question 6.7. Is it true that if X is a G/P , then all the positive cones defined here coincide?

This is true for Grassmannians, and probably at least for the flag manifolds of GLn(C).

Question 6.8. If a : X → A is the Albanese map, then is a∗ Eff
k
(A) ⊂ PLk(X)?

How about if we have a map f : X → G/P?

The intention behind the construction of the pliant cone was to collect all the classes that have very good
positivity properties and that can be constructed geometrically.

Question 6.9. Is it true that Movk(X) is the birationally pliant cone?

We know that pushforwards of bpf classes via birational morphisms span a dense subcone of Movk(X).

Question 6.10. Is it true that if α ∈ Effk(X) is extremal and not movable then there exists a subvariety
i : Z ↪→ X and β ∈ Effk(Z) such that i∗β = α?

This could help many arguments by induction on dimension via Zariski decompositions.

Question 6.11. If ` is the class of a line in P3, is it true that mob(`) = 1? If not, compute it.
Is it true that more generally mob(hk) = (hn) for any ample class on a (smooth) (complex) projective X?
Is there a different and more computable definition of “volume” for numerical classes that is continuous

on Nk(X) and positive precisely on the big cone?

[5, Theorem 7.3] shows that mob(`) ∈ [1, 3.54).
Supporting evidence for the claim on mob(hk) is that if hk = ak for some ample divisor classes, then

(hn) = (an) follows from the Hodge inequalities for intersections of nef classes.
Lazarsfeld suggests that allowing multiplicities at the points in the definition of the mobility count could

give a more computable definition for mobility, or for a function with similar properties.

Question 6.12. Do flat, not necessarily l.c.i, pullbacks exist for numerical groups of singular varieties?

Question 6.13. How does Ottem’s positivity for subvarieties from here fit into this picture?

The issue is that positivity notions defined on subvarieties rarely descend to numerical equivalence, and it
is unclear that they generate Nk(X) even when X is smooth. What is known is that the numerical classes
of l.c.i subvarieties with nef normal bundle are themselves nef.
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