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A motivating example: shock (blast wave) calculation.
This pressure wave moves left to right over time.
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Force on a particle moving with the air is determined by
the local pressure change

Force is mass times acceleration.

ρa = −dp

dx
(from “Euler equations”)

I ρ is mass density.

I a is acceleration.

I p is pressure.

I Other variables (energy, velocity) are involved, but we will
focus on just dp

dx .
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Look at the forces on these particles by studying the
pressure derivative (think “slope”)...
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The fluid states are only computed at specific points
(particle locations).

Derivatives do not exist for discrete data, so how
does the computer calculate the forces −dp

dx ?
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Two important interpretations of derivatives: algebraic and
geometric. Here, p(x) = ln(x) (black).
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Two important interpretations of derivatives: algebraic and
geometric. Here, p(x) = ln(x) (black).
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Two important interpretations of derivatives: algebraic and
geometric. Here, p(x) = ln(x) (black).
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“Numerical differentiation” refers to approximating a
derivative using some local function values.

Let ∆x > 0 be given.

I Forward approximation:

d

dx
p(x) ≈ p(x + ∆x)− p(x)

∆x
.

I Backward approximation:

d

dx
p(x) ≈ p(x)− p(x −∆x)

∆x
.

I Centered approximation:

d

dx
p(x) ≈ p(x + ∆x)− p(x −∆x)

2∆x
.
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Forward approximation means calculates the slope of the
red line, as before.
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p(x) = ln(x) , look at x = 0.6 again
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Backward approximation means calculating the slope of
the blue line.
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A centered approximation means calculating the slope of
the magenta line.
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Note that the centered slope is the average of the forward
and backward slopes:
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The centered method is usually the most accurate,
because it averages the errors.

p(x + ∆x)− p(x −∆x)
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In fact, look at errors in dp
dx at x = 0.6 using these three

methods (with p(x) = ln(x) again)...

The centered method benefits from error cancellation!

∆x forward backward centered

0.4 −0.3896 1.0799 0.3451
0.04 −0.0532 0.0582 0.0025

0.004 −0.0055 0.0056 2.5× 10−5

0.0004 −0.0006 0.0006 2.5× 10−7
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As more particles are used in our shock calculation, the
resolution of the front improves.
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The standard centered approximation for −dp
dx is

our shock calculation FAILS!
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It is easier to understand the fix with a simpler problem.

I “Burgers’ equation” requires only one variable (call it p
again).

I Many connections with fluids, but the single variable greatly
reduces the required math.

I At each time, one must approximate

− d

dx

(
1

2
p(x)2

)
.

I In other words, set g(x) = 1
2p(x)2 and it reduces to

− d

dx
g(x).
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The first step is to generalize our thinking about how to
compute the derivative.
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Use a centered approximation from fictitious points nearby.
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The problem reduces to constructing p at midpoints.
Again, a seemingly intuitive approach may fail.
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This approach fails...
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A lesson: numerics must generally be tailored to the
solution behavior. We apply the idea of “upwinding”.
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Here is p(x) at a certain time.
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A lesson: numerics must generally be tailored to the
solution behavior. We apply the idea of “upwinding”.
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A lesson: numerics must generally be tailored to the
solution behavior. We apply the idea of “upwinding”.
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Upwinding: construct “left” and “right” states, then
choose the result from the upwind direction.
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Upwinding: construct “left” and “right” states, then
choose the result from the upwind direction.
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Upwinding: construct “left” and “right” states, then
choose the result from the upwind direction.

position ( x )

fu
n

ct
io

n
va

lu
es

Analogously, we
construct a
“right” state pR .

@
@R

Jeffrey Connors Numerical differentiation: some lessons from blast calculations



Motivation Num. Diff. Upwind Limiters

Upwinding: construct “left” and “right” states, then
choose the result from the upwind direction.
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The “right” state is used in this example since it comes
from the upwind direction.

position ( x )

fu
n

ct
io

n
va

lu
es

Jeffrey Connors Numerical differentiation: some lessons from blast calculations



Motivation Num. Diff. Upwind Limiters

This approach works better...
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We use “slope limiting” to get better accuracy at a front.
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We use “slope limiting” to get better accuracy at a front.
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... then set the
slope to zero.
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If the slope does not change sign, the limiting is less severe.
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We “limit” by using the slope with the smallest size.
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Here, the “left” state (blue) would be chosen, being the
upwind value.
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Summary: use slope-limiting and upwinding to construct p

at midpoint. Use a centered slope for dg
dx .
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This approach yields a reasonable result...
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THANK YOU!
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