Math 5521 Homework 1

Due Spring 2018

In all problems, let Ω be an open, bounded, simply-connected subset of \mathbb{R}^d with Lipschitz-continuous boundary, for d = 2 or d = 3.

1. Let $f \in H^k(\Omega)$, where k may be any (fixed) integer. Show that

$$\frac{\partial f}{\partial x_i} \in H^{k-1}(\Omega), \ 1 \le i \le d.$$

2. Let Ω_j , $1 \leq j \leq N < \infty$, be bounded, simply-connected subsets of \mathbb{R}^d with Lipschitz-continuous boundaries, such that $\overline{\Omega} = \bigcup_{1 \leq j \leq N} \Omega_j$. Here each set Ω_j is closed with non-empty interior, and for $i \neq j$, $\mathring{\Omega}_i \cap \mathring{\Omega}_j = \varnothing$. Let \hat{n}_j be the outward-pointing unit normal vectors for $\partial \Omega_j$, and let $\vec{u}_j = \vec{u}|_{\Omega_j}$, $1 \leq j \leq N$, where $\vec{u} \in (L^1(\Omega))^d$. Suppose that

$$\vec{u}_i \in H_{DIV}(\Omega_i), \ 1 \le j \le N$$

and that

$$\vec{u}_i \cdot \hat{n}_i + \vec{u}_j \cdot \hat{n}_j = 0, \ 1 \le i, j \le N.$$

Prove that $\vec{u} \in H_{DIV}(\Omega)$.

3. The purpose of this exercise is to prove that the trace operator $\gamma_0: H^1(\Omega) \to Range(\gamma_0) = H^{1/2}(\partial\Omega)$ admits a continuous, linear right inverse, say E. Use the norm

$$\|g\|_{H^{1/2}(\partial\Omega)} \equiv \inf_{\substack{v \in H^1(\Omega) \\ \gamma_0(v) = q}} \|v\|_{H^1(\Omega)}.$$

You may use the fact that $H^{1/2}(\partial\Omega)$ is Banach with this norm, and that the trace operator is continuous;

$$\|\gamma_0(v)\|_{H^{1/2}(\partial\Omega)} \le \|v\|_{H^1(\Omega)}.$$

To construct the inverse, given $g \in H^{1/2}(\partial\Omega)$, consider solving for $\phi = E(g) \in H^1(\Omega)$ with $\gamma_0(\phi) = g$ such that

$$(\phi, \psi) + (\nabla \phi, \nabla \psi) = 0, \ \forall \psi \in H^1_0(\Omega).$$

Show that Range(E) is closed. Apply the Open Mapping Theorem to conclude that E is continuous.