Math 5511 Homework 3

Due May 10, 2019

Instructions: submit solutions for any two problems below.

Theoretical:

(1) You are given the model problem to find $y:[0, T] \rightarrow \mathbb{R}$ for some $T>0$ such that

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)), \quad t \in[0, T] \\
y(0) & =y_{0} \in \mathbb{R}
\end{aligned}
$$

(1a) Show that Crank-Nicolson is an A-stable method for IVPs.
(1b) Show that Crank-Nicolson is consistent of order 2 for any $y \in C^{3}[0, T]$ that solves this problem.
(1c) Given that f satisfies a uniform Lipschitz condition

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|, \quad \forall t \in[0, T], \quad \text { and any } y_{1}, y_{2} \in \mathbb{R}
$$

prove that for a unique solution $y \in C^{3}[0, T]$, the Crank-Nicolson method is convergent of order 2 .
(2) You are given the boundary value problem to find $u:[a, b] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
u(x)-u^{\prime \prime}(x) & =f(x), \quad x \in(a, b) \\
{[u(a), u(b)] } & =[\alpha, \beta] \in \mathbb{R}^{2}
\end{aligned}
$$

with $f(x)$ a smooth function. Derive a finite-difference method (FDM) to approximate the solution to this problem that is consistent of order 2 for smooth solutions $u(x)$. (You must show the second-order truncation error). Write the FDM using matrix notation as $M \vec{u}=\vec{b}$, where \vec{u}, \vec{b} are column vectors and M a square matrix. Here, \vec{u} represents the nodal values of the discrete solution and should not contain the boundary values. Provide formulas for the entries of M and \vec{b}.

Computational:

Submit your MATLAB code (e-mail if possible) along with your solutions. Explain how to run the code where appropriate.
(3) Solve $y^{\prime}(t)=\lambda y(t), 0 \leq t \leq 1$, with $y(0)=10$ for $\lambda=-1,-50$ using forward-Euler, backward-Euler, the midpoint method and Crank-Nicolson. You can easily calculate the update formulas by hand and put them all in a single loop. You do not need to store the solution at all time steps; you will only use the last time step. Use time steps sizes $\Delta t=1 / 2^{k}$ for $k=2,3, \ldots, 9$. Since we know the true solution, use it to calculate the errors $e=e(\Delta t)$ at time $t=1$. Plot $\log |e(\Delta t)|$ versus $\log \Delta t$ for each of the four methods using only two plots; one for each λ-value. Explain the results.
(4) Implement your finite difference method for problem (2) above, in the case $\alpha=1, \beta=2$, $f(x)=\left(1-\gamma^{2}\right) e^{\gamma(x+1)}, \gamma=\ln (2) / 2$, on the domain $[a, b]=[-1,1]$. The true solution is given by
$u(x)=e^{\gamma(x+1)}$. Use grid sizes $h=1 / 2^{k}$ for $k=2,3, \ldots, 7$. Presumably, you should be able to apply the error anzatz $e_{h}=\max _{i}\left|u\left(x_{i}\right)-u_{i}\right|=C h^{2}$, from which it follows that

$$
\log e_{h}=\log C+2 \log h
$$

Plot $\log e_{h}$ versus $\log h$ and explain your results.

