Math 5511 Homework 2

Due May 10, 2019

Solve 2 problems:

(1) Given any $\alpha>0$, a matrix A is defined by

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \alpha \\
0 & 0 & \alpha
\end{array}\right]
$$

Let $\operatorname{lub}_{2}(A)$ be the matrix norm induced by the Euclidean vector norm and define the condition number by $\operatorname{cond}_{2}(A)=\operatorname{lub}_{2}\left(A^{-1}\right) \operatorname{lub}_{2}(A)$. Prove that

$$
\operatorname{cond}_{2}(A)=\frac{1+2 \alpha^{2}+\sqrt{1+4 \alpha^{4}}}{2 \alpha}
$$

(2) Let H be a nonsingular, $n \times n$ complex matrix in upper-Hessenberg form, with eigenvalues λ_{i}, $i=1,2, \ldots, n$. If $H=\left[h_{i j}\right]$, assume that some but not all entries $h_{i+1, i}$ are zero, $i=1,2, \ldots n-1$. Also, assume the eigenvalues are distinct. Explain precisely how to adapt Hyman's method to find the eigenvalues and eigenvectors of H. Hint: H is block-upper-triangular.
(3) Let A be a nonsingular, $n \times n$ complex matrix. You are given that

$$
A=Q_{1} R_{1}=Q_{2} R_{2}
$$

are two $Q R$-factorizations of A, with $Q_{1}^{H} Q_{1}=Q_{2}^{H} Q_{2}=I$ and both R_{1} and R_{2} are upper-triangular. Prove that there exists a phase matrix $S=\operatorname{diag}\left(e^{i \phi_{1}}, \ldots, e^{i \phi_{n}}\right), \phi_{j} \in \mathbb{R}$, $j=1,2, \ldots, n$ such that

$$
Q_{2}=Q_{1} S^{H}, \quad R_{2}=S R_{1}
$$

(4) Show that if the QR algorithm is performed with Givens rotations, the structures of Hessenberg and Hermitian tridiagonal matrices are preserved upon each iteration.

