
Math 5040 (CFD) Final Project

Due 4 PM on May 5, 2017. NO LATE SUBMISSIONS.

Let Ω ⊂ R2 be the backward-facing step domain, as described in the project
code on the course website. The top and bottom walls are denoted by Γ1, the
outflow boundary by Γ2 and the inflow boundary by Γ3. You will add to the
provided code to solve the following problem:

−ν∆u+ u · ∇u+∇p = f, in Ω, (1)

∇ · u = 0, in Ω, (2)

u|Γ1
= g1(x, y), (3)

2νn̂ ·D(u)− pn̂ = 0, on Γ2 (4)

u|Γ3
= g3(x, y). (5)

Derive the weak problem as discussed in class. We will define a weak
Galerkin-FEM problem with some additional features. First, the explicit skew-
symmetry technique must be modified, since we do not have simply u · n̂ = 0 at
the outflow; instead, use the trilinear term

b∗(u, v, w) ≡ 1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) +

1

2

∫
Γ2

(u · n̂) v · w dy.

For the problem we will solve, we will expect that

1

2

∫
Γ2

(u · n̂) |u|2 dy ≥ 0,

since Γ2 is the outflow boundary, thus

b∗(uh, uh, uh) ≥ 0,

even for the discrete approximation uh, which may help the stability.
Also, you will implement “grad-div stabilization” to help reduce the size of

the divergence of the discrete velocity. Since the NSE solution is divergence-free,
we have −γ∇(∇ · u) = 0. The value γ > 0 is a constant, called the grad-div
parameter. Add this into the NSE (for free). The corresponding weak terms
are:

γ(∇ · u,∇ · v),

1

which is NOT just zero when we discretize;

γ(∇ · uh,∇ · vh) 6= 0.

However, as γ →∞, ∇ · uh → 0.
The first steps for you are as follows:

1. Add in the nonlinear terms in the code to perform a fixed-point iteration;

find u
(n+1)
h from u

(n)
h with

b∗
(
u

(n)
h , u

(n+1)
h , vh

)
.

2. Add in the grad-div terms.

3. Add in code to calculate ‖∇ · uh‖ and print the value at the end.

You will then need to “verify” that the code works. We proceed via the
method of manufactured solutions; one chooses a solution as follows. Define

C =
1

8000

u = C
〈
2y − 1 + (20− x)3, 3y(20− x)2 − 2x

〉
,

and p = C (20− x)(2y − 1).

This will be a unique solution if we simply define the data f , g1 and g3 by in-
serting our choices of u and p into (1), (3) and (5). This is already implemented
in your code. One may easily verify that the remaining equations also hold, but
you need to pay attention to the definition of the domain in the code to see why.
Note that the velocity is a cubic polynomial and the pressure quadratic. In the
code, P3− P2 Taylor-Hood is implemented.

If you completed the code correctly, then upon running it with initial guess

u
(0)
h = u (true solution), you should see the errors for velocity are on the order

of round-off, meaning around 10−16 or so, and the pressure only a bit larger
(due to the penalization technique). The divergence measurement will be a bit
larger still, due to taking a square-root of a small number. Be careful not to
edit anything that you do not need to, which could introduce bugs
in your code. The parameter values are already set, except set γ = 1. Then,

take u
(0)
h = 0 and verify that the code converges. The errors should be on the

order of 10−10 or smaller. This gives you an idea of the best accuracy you can
expect to achieve with the parameters as set in the code.

After verifying your code, create a copy with a new name. I will want to
see both copies, ultimately. You will perform the following tests, modifying the
new code accordingly. In all cases, set f = 0, g1 = 0 and

g3(x, y) ≡ 〈12(1− y)(2y − 1), 0〉 .

This is a problem for flow over a backward-facing step, neglecting gravity. Per-
form all of the following tests and answer all questions as indicated. Lengthy
answers are not necessary. Send me an e-mail with both versions of your code
and the answers to the questions.

2

Test 1
Keep all parameters as set in the code, except compare the results with γ = 0
and with γ = 10j for j = 0, 1, 2, 3, 4. The plots will look roughly the same, but
how does ‖∇ · uh‖ scale with γ?
Test 2
Now decrease the viscosity to ν = 2 · 10−3 and set γ = 104. How does the
solution change with the smaller viscosity? What about the required number of
iterations for convergence?

3

