Math 2110Q Worksheet 15 Solutions

1. Let $\mathscr{D}=\{(x, y) \mid 0 \leq x \leq 1,-x \leq y \leq 2 x\}$. Use the transformation $u=x+y, v=2 x-y$ to calculate

$$
\iint_{\mathscr{D}} 2(x+y)(2 x-y-3) d A
$$

Solution: We find the corresponding bounds in $u v$-space by transforming each boundary edge in turn. Along the edge $y=-x, x+y=0$ so that $u=0$. Along the edge $y=2 x, 2 x-y=0$ so that $v=0$. Then there is the edge where $x=1$. Then we have both $u=1+y$ and $v=2-y$. Then $u-1=y$ and we substitute for y in the v-equation to get $v=2-(u-1)=3-u$, which is a line in $u v$-space. So the transformation corresponds to a triangle $0 \leq u \leq 3$, $0 \leq v \leq 3-u$ in $u v$-space. Now, we find the magnitude of the Jacobian; first we invert our transformation. We could substitute $x=u-y$ into the v-equation to get $v=2(u-y)-y=2 u-3 y$. Then $y=(2 u-v) / 3$. Substitute this back into $x=u-y=u-(2 u-v) / 3=(u+v) / 3$. Therefore, the Jacobian is

$$
\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right|=-\frac{1}{3} .
$$

Recall we take the absolute value of the Jacobian when we apply the change of variables, so that

$$
\begin{aligned}
\iint_{\mathscr{D}} 2(x+y)(2 x-y-3) d A & =\int_{0}^{3} \int_{0}^{3-u} 2 u(v-3) \frac{1}{3} d v d u=\left.\frac{1}{3} \int_{0}^{3} u(v-3)^{2}\right|_{v=0} ^{v=3-u} d u \\
& =\frac{1}{3} \int_{0}^{3} u^{3}-9 u d u=\left.\frac{1}{3}\left[\frac{1}{4} u^{4}-\frac{9}{2} u^{2}\right]\right|_{0} ^{3} \\
& =\frac{1}{3}\left(\frac{81}{4}-\frac{81}{2}\right)=-\frac{27}{4}
\end{aligned}
$$

Some comments:

1. There are many ways to explain the domain transformation. Since the change of variables is linear, we could note that the new region in $u v$-space must also be triangular, and simply map the vertices of the triangle in $x y$-space to those in $u v$-space, then connect the dots.
2. One could also find the inverse transformation first, then insert the new equations for $x=x(u, v)$ and $y=y(u, v)$ into the equations for the boundary edges of the triangle in $x y$-space to convert it to $u v$-space. In this case, this is probably the most work.
3. Describe the circle of intersection of the spheres $x^{2}+y^{2}+z^{2}=16$ and $x^{2}+y^{2}+(z-3)^{2}=4$ using spherical coordinates. (4 pts.)

Solution: convert these equations to spherical coordinates. The first sphere is just $\rho=4$. The second is

$$
\begin{aligned}
\rho^{2} \sin ^{2}(\phi)+(\rho \cos (\phi)-3)^{2}=4 & \Rightarrow \rho^{2} \sin ^{2}(\phi)+\rho^{2} \cos ^{2}(\phi)-6 \rho \cos (\phi)+9=4 \\
& \Rightarrow \rho^{2}-6 \rho \cos (\phi)+5=0
\end{aligned}
$$

The intersection occurs when $\rho=4$, so that

$$
16-24 \cos (\phi)+5=21-24 \cos (\phi)=0 \Rightarrow \cos (\phi)=\frac{21}{24}=\frac{7}{8} \Rightarrow \phi=\cos ^{-1}\left(\frac{7}{8}\right)
$$

The circle of intersection wraps around the z-axis. In spherical coordinates, the curve is completely described by

$$
\rho=4, \phi=\cos ^{-1}\left(\frac{7}{8}\right), 0 \leq \theta \leq 2 \pi
$$

