Math 2110Q Worksheet 6 - Solutions

1. Given a curve with parameterization $\vec{r}(t)=<\sqrt{2} \cos (t), 1+t, \sqrt{2} \sin (t)>$, find the TNB-frame vectors AND the curvature at the point $(-\sqrt{2}, 1+\pi, 0)$.

Note that for the given point, the corresponding parameter value is $t=\pi$.

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =<-\sqrt{2} \sin (t), 1, \sqrt{2} \cos (t)>,\left|\vec{r}^{\prime}(t)\right|=\sqrt{2\left(\sin ^{2}(t)+\cos ^{2}(t)\right)+1}=\sqrt{3} \\
\Rightarrow \vec{T}(t) & =\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=<-\sqrt{2 / 3} \sin (t), \sqrt{3} / 3, \sqrt{2 / 3} \cos (t)> \\
\vec{T}^{\prime}(t) & =<-\sqrt{2 / 3} \cos (t), 0,-\sqrt{2 / 3} \sin (t)>,\left|\vec{T}^{\prime}(t)\right|=\sqrt{2 / 3} \\
\Rightarrow \vec{N}(t) & =\frac{\vec{T}^{\prime}(t)}{\left|\vec{T}^{\prime}(t)\right|}=<-\cos (t), 0,-\sin (t)>.
\end{aligned}
$$

Now, plug in $t=\pi \ldots$

$$
\begin{aligned}
& \vec{T}(t=\pi)=<0, \sqrt{3} / 3,-\sqrt{2 / 3}> \\
& \vec{N}(t=\pi)=<1,0,0> \\
& \vec{B}(t=\pi)=\vec{T} \times \vec{N}=<0,-\sqrt{2 / 3},-\sqrt{3} / 3>
\end{aligned}
$$

Two approaches are possible for the curvature... one is to find $\vec{r}^{\prime \prime}(t)=<-\sqrt{2} \cos (t), 0,-\sqrt{2} \sin (t)>$ and then

$$
\kappa=\frac{\left|\vec{r}^{\prime} \times \vec{r}^{\prime \prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}}=\frac{|<0,1,-\sqrt{2}>\times<\sqrt{2}, 0,0>|}{3 \sqrt{3}}=\frac{|<0,-2,-\sqrt{2}>|}{3 \sqrt{3}}=\frac{\sqrt{6}}{3 \sqrt{3}}=\frac{\sqrt{2}}{3} .
$$

The other is the alternative formula $\kappa=\left|\vec{T}^{\prime}(\pi)\right| /\left|\vec{r}^{\prime}(\pi)\right|$, plugging values in from the above formulas. This is much faster for this problem; the rule of thumb is that when $\vec{T}^{\prime}(t)$ is not too cumbersome to find, then the second approach is faster. However, in practice it will often be cumbersome.
2. Let $\vec{a}(t)=<4 e^{2 t}, 6 t, 0>$ describe the acceleration of a particle (neglecting units). Find the position of the particle at time t if the initial position is $(1,0,1)$ and the initial velocity is $\langle 2,0,0\rangle$.

Note that

$$
\vec{v}(t)=\int \vec{a}(t) d t=<2 e^{2 t}, 3 t^{2}, 0>+\vec{C}_{1}
$$

where $\vec{v}(0)=<2,0,0>$ works to match our given initial velocity with $\vec{C}_{1}=<0,0,0>$. Thus, we have position vector

$$
\vec{r}(t)=\int \vec{v}(t) d t=<e^{2 t}, t^{3}, 0>+\vec{C}_{2}
$$

where \vec{C}_{2} is found from the equation

$$
\vec{r}(0)=<1,0,0>+\vec{C}_{2}=<1,0,1>\Rightarrow \vec{C}_{2}=<0,0,1>
$$

Thus, $\vec{r}(t)=<e^{2 t}, t^{3}, 1>$.

