Math 2110Q Worksheet 9 - Solutions

1. Given $f=f(x, y, z)$ with parameterizations $x(t)=1-t, y(t)=2 t+5$ and $z(t)=t^{2}$, find $f^{\prime}(t=2)$ if $\partial f / \partial x=1, \partial f / \partial y=-1$ and $\partial f / \partial z=2$ for $t=2$. $(3 \mathrm{pts})$.
Solution: The Chain Rule tells us that

$$
f^{\prime}(t)=\frac{\partial f}{\partial x} x^{\prime}(t)+\frac{\partial f}{\partial y} y^{\prime}(t)+\frac{\partial f}{\partial z} z^{\prime}(t) .
$$

The values of the partial derivatives at $t=2$ are given, so just plug them in and calculate the remaining derivatives from the given formulas for $x(t), y(t)$ and $z(t)$:

$$
f^{\prime}(2)=x^{\prime}(2)-y^{\prime}(2)+2 z^{\prime}(2)=-1-2+2(4)=5 .
$$

2. Find the directional derivative of $f(x, y)=\ln \left(1+2 x^{2}+3 y^{2}\right)$ in the direction of $<-2,2>$ at the point $(1,1)$. Also, calculate the maximum rate of change for f at this point (4 pts).
Solution: We require the normalized direction vector;

$$
\hat{u}=\frac{1}{\sqrt{8}}<-2,2>
$$

We need also $\nabla f(1,1)$:

$$
\nabla f(1,1)=\frac{1}{1+2 x^{2}+3 y^{2}}<4 x, 6 y>\left.\right|_{(x, y)=(1,1)}=\left\langle\frac{2}{3}, 1\right\rangle
$$

The directional derivative is now the dot-product of ∇f and \hat{u}, which is $1 /(3 \sqrt{2})$. Finally, the maximum rate of change is

$$
|\nabla f(1,1)|=\sqrt{4 / 9+1}=\frac{\sqrt{13}}{3}
$$

3. Find the equation of the tangent plane at $(x, y, z)=(2,-1,1)$ on the surface $x y+x z+y \sin (2 \pi z)=0$. (3 pts).
Solution: Define $F(x, y, z)=x y+x z+y \sin (2 \pi z)$. Then calculate

$$
\nabla F=<y+z, x+\sin (2 \pi z), x+2 \pi y \cos (2 \pi z)>
$$

You must insert the given values $(x, y, z)=(2,-1,1)$, yielding

$$
\nabla F=<0,2,2-2 \pi>
$$

Now apply the formula for the tangent plane using the given point:

$$
\nabla F \cdot<x-2, y-(-1), z-1>=0 \Rightarrow 2(y+1)+(2-2 \pi)(z-1)=0 .
$$

