Math 2110Q Worksheet 8

October 5, 2016

1. Find the equation of the tangent plane when $(x, y)=(1, \sqrt{3} / 2)$ on the surface $f(x, y)=x^{2} / 4+y^{2}$. (3 pts).
Solution: The height of the surface at the point of tangency is $f(1, \sqrt{3} / 2)=z_{0}=1$. We need the partial derivatives at this point;

$$
f_{x}=\left.\frac{1}{2} x\right|_{x=1}=\frac{1}{2}, \quad f_{y}=\left.2 y\right|_{y=\sqrt{3} / 2}=\sqrt{3} .
$$

Now insert these quantities into the formula for the tangent plane:

$$
z-1=\frac{1}{2}(x-1)+\sqrt{3}\left(y-\frac{\sqrt{3}}{2}\right) .
$$

2. Let the potential energy of a spring be U and $U=k x^{2} / 2$, where k is a spring constant and x is displacement. Use differentials to estimate how large of an error in the calculation of U might exist if one can only measure $k=2$ to within a tolerance of $\Delta k= \pm 0.02$ and $x=1$ to within a tolerance of $\Delta x= \pm 0.01$ (3 pts.).
Solution: Approximate

$$
\Delta u \approx \frac{\partial u}{\partial k} \Delta k+\frac{\partial u}{\partial x} \Delta x=\frac{1}{2} \Delta k+2 \Delta x
$$

Now insert the given tolerances. It follows that

$$
\Delta u \approx \pm\left(\frac{1}{2} \cdot 0.02+2 \cdot 0.01\right)= \pm 0.03
$$

3. Find all second-order partial derivatives of $f(x, y)=\sin (x y)(3 \mathrm{pts})$.

$$
\begin{aligned}
f_{x} & =y \cos (x y) \\
f_{y} & =x \cos (x y) \\
f_{x x} & =-y^{2} \sin (x y) \\
f_{x y} & =f_{y x}=\cos (x y)-x y \sin (x y) \\
f_{y y} & =-x^{2} \sin (x y)
\end{aligned}
$$

4. Given $y z+x \ln (1+z)=2 x^{2} y-8$, we may think of $z=z(x, y)$ as a function of x and y locally near $(x, y, z)=(2,1,0)$. Find $\partial z / \partial x$ at the given coordinates. (3 pts .)
Solution: Use implicit differentiation as follows:

$$
y z_{x}+\ln (1+z)+\frac{x}{1+z} z_{x}=4 x y .
$$

Insert the given values $(x, y, z)=(2,1,0)$. The equation reduces to simply $3 z_{x}=8$, so that $z_{x}=8 / 3$.

