Math 2110Q Worksheet 5 - Solutions

September 19, 2016

1. Find the length of the arc $\vec{r}(t), 0 \leq t \leq \pi$, where $\vec{r}(t)=<\sqrt{2} \cos (t), \sqrt{2} \sin (t), 1+6 t>$. (3 pts.)

Solution: First, calculate the length of the tangent $\vec{r}^{\prime}(t)=<-\sqrt{2} \sin (t), \sqrt{2} \cos (t), 6>$;

$$
\left|\vec{r}^{\prime}(t)\right|=\sqrt{2 \sin ^{2}(t)+2 \cos ^{2}(t)+36}=\sqrt{2+36}=\sqrt{38}
$$

Now, integrate to get arc length:

$$
\int_{0}^{\pi}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{\pi} \sqrt{38} d t=\sqrt{38} \pi
$$

2. Given a curve with vector equation $\vec{r}(t)=<e^{2 t}, \ln \left(1+t^{2}\right), 3>$, find the equation of the tangent line at the point $(1,0,3)$. (3 pts .)

Solution: We need the direction vector for the line at the given point, for which purpose it suffices to use $\vec{r}^{\prime}(t)=<2 e^{2 t}, 2 t /\left(1+t^{2}\right), 0>$. We need the value of t, which must be $t=0$ so that $\vec{r}(0)=<1,0,3>$ points to the correct point on the line. It follows that the vector equation of the line is (in terms of a parameter, say s,)

$$
<x(s), y(s), z(s)>=\vec{r}(0)+s \vec{r}^{\prime}(0)=<1,0,3>+s<2,0,0>.
$$

3. Find $\vec{T}(t)$ if $\vec{r}(t)=<1+t^{2} \sqrt{3}, t^{3} / 3,6 t>$. (2 pts.)

Solution: First, calculate

$$
\vec{r}^{\prime}(t)=<2 t \sqrt{3}, t^{2}, 6>
$$

and the magnitude is $\left|\vec{r}^{\prime}(t)\right|=\sqrt{12 t^{2}+t^{4}+36}$. This need not be simplified, but it can be seen that $\left|\vec{r}^{\prime}(t)\right|=\sqrt{\left(t^{2}+6\right)^{2}}=t^{2}+6$. Therefore,

$$
\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{1}{t^{2}+6}<2 t \sqrt{3}, t^{2}, 6>
$$

4. Let $\vec{r}(t)=<t-1, \cos (t), \sin (t)>$. Calculate $\int_{0}^{\pi / 2} \vec{r}(t) d t$. (2 pts.)

Solution: Integrate component-by-component to find the desired vector.

$$
\int_{0}^{\pi / 2} \vec{r}(t) d t=\left.\left\langle\frac{1}{2}(t-1)^{2}, \sin (t),-\cos (t)\right\rangle\right|_{t=0} ^{t=\pi / 2}=\left\langle\frac{1}{2}\left(\left(\frac{\pi}{2}-1\right)^{2}-1\right), 1,1\right\rangle
$$

5. Given a curve with parameterization $\vec{r}(t)=<2 t, t^{2}, 4>$, find the rate of change of arc length when $t=1$. (2 pts).

Solution: This is $\left|\vec{r}^{\prime}(1)\right|=|<2,2,0>|=2 \sqrt{2}$.

