Math 2110Q Worksheet 4 Solutions
 September 14, 2016

1. Classify each type of surface below. (4 pts.)
A. $3 x^{2}+y^{2}-z^{2}=-3$. TWO-SHEET HYPERBOLOID.
B. $y^{2}+7 z^{2}=x^{2}$. CONE (ELLIPTIC).
C. $4 x^{2}-y^{2}-3 z=0$. HYPERBOLIC PARABOLOID.
D. $10 y^{2}+z^{2}=2$. ELLIPTIC CYLINDER.
2. Provide examples of equations for the following four types of surfaces and label your answers by surface type: one-sheet hyperboloid, ellipsoid, paraboloid and plane. (4 pts.)
Solution: There are infinitely many correct answers, but here are simple examples.

- 1-sheet hyperboloid: $x^{2}+y^{2}-z^{2}=1$.
- Ellipsoid: $x^{2}+y^{2}+z^{2}=1$.
- Paraboloid: $z=x^{2}+y^{2}$.
- Plane: $x+y+z=1$.

3. Parameterize the curve formed by the intersection of the surfaces $-x+y+z=1$ and $2 y+3 z^{2}=5$. (4 pts .)

Solution: A curve requires a single parameter, which you must identify by inspection of the equations. In the second equation, we easily determine

$$
y=y(z)=\frac{5-3 z^{2}}{2}
$$

From the first equation, it follows that

$$
x=y+z-1=y(z)+z-1=\frac{5-3 z^{2}}{2}+z-1 .
$$

Now we have both $x=x(z)$ and $y=y(z)$ in terms of the single parameter z. This parameterizes the curve of intersection.
4. Given that $\vec{r}(t)=<t^{2}-1, \cos (\pi t), t /(t+1)>$, find

$$
\lim _{t \rightarrow 1} \vec{r}(t) \text { and } \lim _{t \rightarrow-1} \vec{r}(t)(2 \mathrm{pts} .)
$$

Solution: The only trickly part is to realize that

$$
\lim _{t \rightarrow-1} \frac{t}{t+1}
$$

does not exist, so that $\lim _{t \rightarrow-1} \vec{r}(t)$ does not exist. On the other hand, we see that

$$
\lim _{t \rightarrow 1} \vec{r}(t)=<0,-1,1 / 2>
$$

