Math 2110Q Worksheet 4 Solutions September 14, 2016

1. Classify each type of surface below. (4 pts.)

A. $3x^2 + y^2 - z^2 = -3$. TWO-SHEET HYPERBOLOID.

B. $y^2 + 7z^2 = x^2$. CONE (ELLIPTIC).

- C. $4x^2 y^2 3z = 0$. HYPERBOLIC PARABOLOID.
- D. $10y^2 + z^2 = 2$. ELLIPTIC CYLINDER.

2. Provide examples of equations for the following four types of surfaces and label your answers by surface type: one-sheet hyperboloid, ellipsoid, paraboloid and plane. (4 pts.)

Solution: There are infinitely many correct answers, but here are simple examples.

- 1-sheet hyperboloid: $x^2 + y^2 z^2 = 1$.
- Ellipsoid: $x^2 + y^2 + z^2 = 1$.
- Paraboloid: $z = x^2 + y^2$.
- Plane: x + y + z = 1.

3. Parameterize the curve formed by the intersection of the surfaces -x + y + z = 1 and $2y + 3z^2 = 5$. (4 pts.) **Solution:** A curve requires a single parameter, which you must identify by inspection of the equations. In the second equation, we easily determine

$$y = y(z) = \frac{5 - 3z^2}{2}.$$

From the first equation, it follows that

$$x = y + z - 1 = y(z) + z - 1 = \frac{5 - 3z^2}{2} + z - 1.$$

Now we have both x = x(z) and y = y(z) in terms of the single parameter *z*. This parameterizes the curve of intersection.

4. Given that $\vec{r}(t) = \langle t^2 - 1, \cos(\pi t), t/(t+1) \rangle$, find

$$\lim_{t\to 1} \vec{r}(t)$$
 and $\lim_{t\to -1} \vec{r}(t)$ (2 pts.)

Solution: The only trickly part is to realize that

$$\lim_{t \to -1} \frac{t}{t+1}$$

does not exist, so that $\lim_{t\to -1} \vec{r}(t)$ does not exist. On the other hand, we see that

$$\lim_{t \to 1} \vec{r}(t) = <0, -1, 1/2 > .$$