Math 2110Q Worksheet 3 Solutions September 12, 2016

1. Given $\vec{u}=<2,-1,-1>$, find the equation(s) for the line that passes through $(0,4,-5)$ in the direction \vec{u}. (2 pts.) Solution: In vector form (any form acceptable) we could write

$$
\vec{r}(t)=<0,4,-5>+t<2,-1,-1>
$$

2. Find a (non-zero) vector perpendicular to both $\vec{u}=<3,0,-1>$ and $\vec{v}=<-1,2,-3>$. (3 pts.)

Solution: One takes the cross-product, for example, to generate the orthogonal vector

$$
\vec{u} \times \vec{v}=<2,10,6>.
$$

Any nontrivial multiple of this is correct.
3. Given a line with symmetric equations

$$
\frac{x-1}{3}=\frac{y+2}{5} \text { and } z=-7,
$$

find the corresponding vector equation for the line. (3 pts .)
Solution: Set the two fractions equal to a parameter t and solve for x and y in terms of t. Then we see the vector equation must be

$$
\vec{r}(t)=<x(t), y(t), z(t)>=<1+3 t,-2+5 t,-7>.
$$

4. Find the equation(s) for the plane containing the points $A=(2,-2,0), B=(3,0,0)$ and $C=(0,0,1)$. (4 pts.)

Solution: Get a normal for the plane by calculating vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then use $\vec{n}=\overrightarrow{A B} \times \overrightarrow{A C}$. Any multiple of this works, but

$$
\vec{n}=<1,2,0>\times<-2,2,1>=<2,-1,6>.
$$

Any of the points in the plane may be inserted into the vector equation for the plane. For example, using point A the equation is

$$
<2,-1,6>\cdot<x-2, y+2, z>=0
$$

This is sufficient; other forms are also fine.
5. Given vectors \vec{u} and \vec{v} in \mathbb{R}^{3} with $|\vec{u}|=2,|\vec{v}|=3$ and an acute angle in between them of $\theta=\pi / 6$, calculate $|\vec{u} \times \vec{v}|$ (2 pts.)
Solution: Just recall that

$$
|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin (\theta)=6 \sin (\pi / 6)=3 .
$$

The last reduction to 3 is not required for credit here.

