Math 2110Q Worksheet 2-Solutions

September 7, 2016

1. Find a vector of length 2 that points in the direction $-\vec{i}+\vec{j}+2 \vec{k}$. (2 pts.)

Solution: First, NORMALIZE the vector to have length 1 . The magnitude of the given vector is $\sqrt{(-1)^{2}+(1)^{2}+(2)^{2}}=\sqrt{6}$. A unit vector in the same direction is thus

$$
\frac{1}{\sqrt{6}}(-\vec{i}+\vec{j}+2 \vec{k})=-\frac{1}{\sqrt{6}} \vec{i}+\frac{1}{\sqrt{6}} \vec{j}+\frac{2}{\sqrt{6}} \vec{k}
$$

Now, we can take this vector and multiply by the desired length, which is 2 , to get the answer:

$$
-\frac{2}{\sqrt{6}} \vec{i}+\frac{2}{\sqrt{6}} \vec{j}+\frac{4}{\sqrt{6}} \vec{k}
$$

(NOTE: I don't care about "reducing" or "simplifying" the coefficients.)
2. Let $\vec{u}=<7,0,-9>$ and $\vec{v}=<3,-2,1>$. Find $\vec{u} \cdot \vec{v}$. (2 pts.)

Solution: Use the formula as follows:

$$
\vec{u} \cdot \vec{v}=(7)(3)+(0)(-2)+(-9)(1)=12 .
$$

3. Find a vector \vec{v} orthogonal to $\vec{u}=<1,-1,2>$ such that $|\vec{v}| \neq 0$. There is no unique answer. (2 pts.)

Solution: This is related to "linear algebra", by the way. Let us propose that $\vec{v}=<v_{1}, v_{2}, v_{3}>$. Then we require simply that

$$
\vec{u} \cdot \vec{v}=0 \Rightarrow v_{1}-v_{2}+2 v_{3}=0
$$

EVERY choice of two numbers v_{1} and v_{2} (not both zero) yields a solution by then solving for v_{3} from

$$
v_{3}=\frac{1}{2} v_{2}-\frac{1}{2} v_{1} .
$$

For example, if $v_{1}=v_{2}=1$ then $v_{3}=0$, hence $\vec{v}=\langle 1,1,0\rangle$ works.
4. Find the angle between $\vec{u}=<1, \sqrt{11}, 2>$ and \vec{k}. (3 pts.)

Solution: First, recall that $\vec{k}=<0,0,1\rangle$. Then use the formula

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{\vec{u} \cdot \vec{k}}{|\vec{u}||\vec{k}|}\right)=\cos ^{-1}\left(\frac{(1)(0)+(\sqrt{11})(0)+(2)(1)}{\left(\sqrt{1^{2}+(\sqrt{11})^{2}+(2)^{2}}\right)(1)}\right) \\
&=\cos ^{-1}\left(\frac{2}{\sqrt{1+11+4}}\right)=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
\end{aligned}
$$

One could answer 60° or just leave it as $\cos ^{-1}(0.5)$.
5. Find the projection of $2 \vec{i}+3 \vec{j}-\vec{k}$ onto $\vec{i}+\vec{j}$. (3 pts .)

Solution: Think of it this way:

$$
\begin{aligned}
\vec{u} & =<2,3,-1> \\
\vec{v} & =<1,1,0> \\
\operatorname{proj}_{\vec{v}}(\vec{u}) & =\frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}=\frac{2+3}{1+1}<1,1,0>=\frac{5}{2}<1,1,0>
\end{aligned}
$$

6. A vector $\vec{u}=<u_{1}, u_{2}>$ has length 2 and if the tail is at the origin, it makes a (positive) 150° angle with respect to the x-axis. Calculate the components u_{1} and u_{2}. (3 pts.)
Solution: One envisions that the vector \vec{u} has its tail at the origin and points to $\left(u_{1}, u_{2}\right)$ on a circle of radius 2 . Trigonometry tells us that the coordinates (and hence components of \vec{u}) are thus

$$
u_{1}=2 \cos \left(150^{\circ}\right) \text { and } u_{2}=2 \sin \left(150^{\circ}\right),
$$

which reduces (did not require for credit) to $\vec{u}=\langle-\sqrt{3}, 1\rangle$.

