Math 2110Q Worksheet 1 - Solutions August 31, 2016

1. Find the distance between $P=(4,-2,1)$ and $Q=(3,0,1)$. (2 pts.)

Solution: Via the formula,

$$
d=\sqrt{(4-3)^{2}+(-2-0)^{2}+(1-1)^{2}}=\sqrt{1+4+0}=\sqrt{5} .
$$

2. Given $\vec{a}=<-1,2,2>$ and $\vec{b}=<-3,5,0>$, find $\vec{b}-\vec{a}$ and $3 \vec{a}$. (2 pts.)

Solution:

$$
\begin{aligned}
\vec{b}-\vec{a} & =\langle-3-(-1), 5-2,0-2\rangle=\langle-2,3,-2\rangle . \\
3 \vec{a} & =\langle 3 \cdot(-1), 3 \cdot 2,3 \cdot 2\rangle=\langle-3,6,6\rangle .
\end{aligned}
$$

3 . What are the projections of $(2,3,4)$ onto the $y z$-plane and onto the $x z$-plane? (2 pts.)
Solution: For the $y z$-plane, just zero-out the x-coordinate value. For the $x z$-plane, just zero-out the y-coordinate value. The answers are then $(0,3,4)$ and $(2,0,4)$, respectively.
4. Find $|<3,-1,-2>|$. (2 pts.)

Solution: You need to know that this notation means to find the magnitude of the vector, which is

$$
\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}}=\sqrt{9+1+4}=\sqrt{14}
$$

5. Use set notation to define the 3D surface satisfying $y=2 x+1$. What kind of surface is this? (2 pts .)
Solution: This is a PLANE. The set of points is

$$
\{(x, y, z) \mid y=2 x+1\}
$$

6. Write the equation for a sphere of radius π with center $(2,6,-1)$. (2 pts .) Solution: If you remember the standard form for the equation, then just insert $\left(x_{0}, y_{0}, z_{0}\right)=(2,6,-1)$ and $r=\pi$ to get

$$
(x-2)^{2}+(y-6)^{2}+(z+1)^{2}=\pi^{2} .
$$

7. Find the center and radius of the sphere S, where

$$
S=\left\{(x, y, z) \mid 2+x^{2}+y^{2}+z^{2}-2 x+4 y+2 z=0\right\} .(3 \text { pts. })
$$

Solution: Complete the square and get into standard form:

$$
\begin{aligned}
& 2+x^{2}+y^{2}+z^{2}- 2 x+4 y+2 z=0 \\
& \Rightarrow x^{2}+y^{2}+z^{2}-2 x+4 y+2 z=-2 \\
& \Rightarrow(x-1)^{2}+(y+2)^{2}+(z+1)^{2}=-2+(-1)^{2}+(2)^{2}+(1)^{2} \\
& \Rightarrow(x-1)^{2}+(y+2)^{2}+(z+1)^{2}=4 .
\end{aligned}
$$

We now see that the center is $(1,-2,-1)$ and the radius is $\sqrt{4}=2$.

