Math 2110Q Worksheet 19 Solutions

December 5, 2016

1. Let S denote the portion of the surface $z=1+x \sqrt{3}+y^{2}$ for $-1 \leq x \leq 2$ and $0 \leq y \leq 1$. Calculate the value of the surface integral

$$
\iint_{S} x y d S
$$

Solution: The natural parameterization should be applied here. Use x and y as the parameters for the surface and take $z=f(x, y)=1+x \sqrt{3}+y^{2}$. Then the integral is

$$
\begin{aligned}
& \int_{-1}^{2} \int_{0}^{1} x y \sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}} d y d x=\int_{-1}^{2} \int_{0}^{1} x y \sqrt{4+4 y^{2}} d y d x=\int_{-1}^{2} \int_{0}^{1} x\left(2 y \sqrt{1+y^{2}}\right) d y d x \\
&=\int_{-1}^{2} x d x \int_{1}^{2} \sqrt{u} d u=2^{3 / 2}-1
\end{aligned}
$$

2. Let S denote the portion of the surface $x+y+z=0$ that lies inside the cylinder $x^{2}+y^{2}=1$. Given the vector field $\vec{F}(x, y, z)=<x^{2}, y^{2}, z^{2}>$, calculate

$$
\iint_{S} \vec{F} \cdot \hat{n} d S
$$

where \hat{n} is the upward-oriented, unit normal vector for S.
Solution: There are some different ways to think about setting this up. One way is to apply the natural parameterization again for the planar surface; $z=-x-y$, but the parameters x and y lie inside a circle of radius 1 . Let us call this region \mathscr{D}. It follows that

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \hat{n} d S=\iint_{\mathscr{D}} \vec{F}(x, y) \cdot<-z_{x},-z_{y}, 1>d x d y=\iint_{\mathscr{D}}<x^{2}, y^{2},(x+y)^{2}> & \cdot<1,1,1>d x d y \\
& =\iint_{\mathscr{D}} x^{2}+y^{2}+(x+y)^{2} d x d y
\end{aligned}
$$

Now we convert into polar coordinates to finish the job:

$$
\begin{aligned}
& \iint_{\mathscr{D}} x^{2}+y^{2}+(x+y)^{2} d x d y=\int_{0}^{2 \pi} \int_{0}^{1} 2 r^{3}(1+\sin (\theta) \cos (\theta)) d r d \theta \\
& \qquad \frac{1}{2} \int_{0}^{2 \pi} 1+\sin (\theta) \cos (\theta) d \theta=\left.\frac{1}{2}\left(1+\frac{1}{2} \sin ^{2}(\theta)\right)\right|_{0} ^{2 \pi}=\pi
\end{aligned}
$$

Another way one might think about it is to directly parameterize the surface using

$$
\vec{r}(r, \theta)=<r \cos (\theta), r \sin (\theta),-r(\sin (\theta)+\cos (\theta))>
$$

and apply the appropriate integration formula. The downside of this approach is that you would calculate $\left|\vec{r}_{r} \times \vec{r}_{\theta}\right|$ directly, which is perhaps a bit more tedious than applying the short-cut formulas above for the natural parameterization.

