Math 2110Q Worksheet 17 Solutions
 November 28, 2016

1. Determine if the following vector fields are conservative. You must justify your answer for credit.
(a) $\vec{F}(x, y)=\langle y+1, x+2 y\rangle$

Solution: Just check as follows:

$$
\frac{\partial}{\partial x}(x+2 y)-\frac{\partial}{\partial y}(y+1)=1-1=0 \Rightarrow \text { conservative }
$$

(b) $\vec{F}(x, y)=<2 y e^{2 x+y},(1+y) e^{2 x+y}+x>$

Solution:

$$
\frac{\partial}{\partial x}\left((1+y) e^{2 x+y}+x\right)-\frac{\partial}{\partial y}\left(2 y e^{2 x+y}\right)=2(1+y) e^{2 x+y}+1-(2+2 y) e^{2 x+y}=1 \Rightarrow \text { not conservative } .
$$

2. Find a potential function for the (conservative) vector field $\vec{F}(x, y)=<4 x, 2 y>$. (4 pt .)

Solution: We seek $f=f(x, y)$ such that $\nabla f=\vec{F}$. It follows that $f_{x}=4 x$, so $f=2 x^{2}+g(y)$, for some unknown function $g(y)$. To solve for $g(y)$, we note $f_{y}=2 y=g^{\prime}(y)$, so that $g(y)=y^{2}+c$, for any constant c. Thus, we may take $f(x, y)=2 x^{2}+y^{2}+c$.
3. Let C be the curve that bounds the 2 D region

$$
\mathscr{D}=\{(x, y) \mid 0 \leq x \leq 1,-\sqrt{x} \leq y \leq \sqrt{x}\},
$$

with C oriented positively with respect to \mathscr{D}. Calculate

$$
\int_{C} 4 y d x+7 x d y
$$

Solution: The easy way is to apply Green's Theorem and convert the integral into a double integral:

$$
\int_{C} 4 y d x+7 x d y=\int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{\partial}{\partial x}(7 x)-\frac{\partial}{\partial y}(4 y) d y d x=3 \int_{0}^{1} \int_{-\sqrt{x}}^{\sqrt{x}} d y d x=6 \int_{0}^{1} \sqrt{x} d x=4
$$

