## Math 2110Q Worksheet 16 Solutions

November 16, 2016

1. Let $\vec{F}(x, y, z)=<1,1,1>$, a constant vector field. Show that this vector field is conservative. Hint: consider $f(x, y, z)=x+y+z$.

Solution: One need only point out that $\nabla f=\vec{F}$, so the vector field is conservative.
2. Let a thin, solid wire have mass density $\rho(x, y)=2 x$, where the wire has position in 2D space given by the part of the curve $y=x^{2}$ with $1 \leq x \leq 2$. Calculate the mass of the wire.

Solution: A simple parameterization of the wire segment is $\vec{r}(x)=<x, x^{2}>$, for $1 \leq x \leq 2$. Then $\vec{r}^{\prime}(x)=<1,2 x>$ and the mass is given by

$$
\int_{1}^{2} 2 x \sqrt{1+4 x^{2}} d x=\frac{1}{4} \int_{5}^{17} \sqrt{u} d u=\frac{1}{6}\left(17^{3 / 2}-5^{3 / 2}\right) .
$$

3. A particle moves along the circular path $x^{2}+y^{2}=1$ starting at $(1,0)$ and proceeding counter-clockwise to $(-1,0)$. If a force $\vec{F}(x, y)=<-y, x>$ acts on the particle, calculate the work done.

Solution: We can parameterize the curve using the idea of polar coordinates; $\vec{r}(t)=<\cos (t), \sin (t)>$, for $0 \leq t \leq \pi$. Then $\vec{r}^{\prime}(t)=<-\sin (t), \cos (t)>$ and it follows that the work done is

$$
\int_{0}^{\pi} F(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{0}^{\pi}<-\sin (t), \cos (t)>\cdot<-\sin (t), \cos (t)>d t=\int_{0}^{\pi} \sin ^{2}(t)+\cos ^{2}(t) d t=\int_{0}^{\pi} d t=\pi .
$$

