Math 2110Q Worksheet 14 Solutions
 November 2, 2016

1. Find the volume of the region bounded by the surfaces $z=-1, z=2$ and the hyperboloid $x^{2}+y^{2}-z^{2}=1$. Hint: think about the curves on the surface of the hyperboloid for fixed z-values.
Solution: On the surface of the hyperboloid, using cylindrical coordinates we have $x^{2}+y^{2}=r^{2}=1+z^{2}$, so that $0 \leq r \leq \sqrt{1+z^{2}}$. The volume is therefore given by

$$
\int_{-1}^{2} \int_{0}^{2 \pi} \int_{0}^{\sqrt{1+z^{2}}} r d r d \theta d z=\pi \int_{-1}^{2}\left(1+z^{2}\right) d z=6 \pi
$$

2. Find the volume of the region bounded between the surfaces $z=4+x^{2}+y^{2}$ and $z=1+4 x^{2}+4 y^{2}$.

Solution: The surfaces intersect where $4+x^{2}+y^{2}=1+4 x^{2}+4 y^{2}$, or where $x^{2}+y^{2}=1$. This means that the entire volume lies over the unit circle in the $x y$-plane, and z is bounded between the two surfaces, so that the volume is given by (cylindrical coordinates)

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{1+4 r^{2}}^{4+r^{2}} r d z d r d \theta=2 \pi \int_{0}^{1} 3 r-3 r^{3} d r=\frac{3 \pi}{2}
$$

