
Math 2110Q Worksheet 13 Solutions
October 31, 2016

1. Consider a laminar structure that occupies the region D = {(x,y) |x2 + y2 ≤ 1, y≥ 0 if x≥ 0}. This is the unit disc
in 2D with the part in the fourth quadrant removed. If the mass density is a constant value over the given region, find
the center of mass.
Solution: The region is part of a circle with (polar coordinates) 0≤ θ ≤ 3π/2 for 0≤ r ≤ 1. Let ρ denote the
constant density. The total mass is then just ρ multiplied by the area of the region, which is 3/4 of the area of a circle
of radius 1; m = 3ρπ/4. The long way:
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Next, we calculate
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Since the density is constant, due to the shape of the region we must have y =−x = 4/(9π).

2. Consider a laminar structure that occupies the region in R2 bounded by the curves y2 = x and y = x2. If the mass
density is denoted by ρ(x,y), provide the general formulas for the moments of inertia about the x and y axes.
Solution: There are various ways to express these integrals:

Ix =
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or if the order of integration is reversed,
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3. Find the surface area of the portion of the surface f (x,y) = 1+ y+ x2 that lies over the rectangle with vertices
(0,0), (1,0) and (1,1) in the xy-plane.
Solution: In the formula for the surface area, we need√
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The integral is then∫ 1
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(63/2−23/2).
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