Math 2110Q Worksheet 13 Solutions

October 31, 2016

1. Consider a laminar structure that occupies the region $\mathscr{D}=\left\{(x, y) \mid x^{2}+y^{2} \leq 1, y \geq 0\right.$ if $\left.x \geq 0\right\}$. This is the unit disc in 2D with the part in the fourth quadrant removed. If the mass density is a constant value over the given region, find the center of mass.
Solution: The region is part of a circle with (polar coordinates) $0 \leq \theta \leq 3 \pi / 2$ for $0 \leq r \leq 1$. Let ρ denote the constant density. The total mass is then just ρ multiplied by the area of the region, which is $3 / 4$ of the area of a circle of radius 1 ; $m=3 \rho \pi / 4$. The long way:

$$
m=\int_{0}^{3 \pi / 2} \int_{0}^{1} \rho r d r d \theta=\frac{\rho}{2} \frac{3 \pi}{2}=\frac{3 \pi \rho}{4} .
$$

Next, we calculate

$$
\begin{aligned}
\bar{x}=\frac{1}{m} \iint_{\mathscr{D}} x \rho d A=\frac{4}{3 \pi \rho} \rho \int_{0}^{3 \pi / 2} \int_{0}^{1}(r \cos (\theta)) r d r d \theta=\frac{4}{3 \pi} \int_{0}^{3 \pi / 2} \cos (\theta) d \theta \int_{0}^{1} r^{2} d r & \\
& =\frac{4}{3 \pi}(-1) \frac{1}{3}=-\frac{4}{9 \pi}
\end{aligned}
$$

Since the density is constant, due to the shape of the region we must have $\bar{y}=-\bar{x}=4 /(9 \pi)$.
2. Consider a laminar structure that occupies the region in \mathbb{R}^{2} bounded by the curves $y^{2}=x$ and $y=x^{2}$. If the mass density is denoted by $\rho(x, y)$, provide the general formulas for the moments of inertia about the x and y axes.
Solution: There are various ways to express these integrals:

$$
\begin{aligned}
I_{x} & =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} y^{2} \rho(x, y) d y d x \\
\text { and } I_{y} & =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} x^{2} \rho(x, y) d y d x
\end{aligned}
$$

or if the order of integration is reversed,

$$
\begin{aligned}
I_{x} & =\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} y^{2} \rho(x, y) d x d y \\
\text { and } I_{y} & =\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} y^{2} \rho(x, y) d x d y
\end{aligned}
$$

3. Find the surface area of the portion of the surface $f(x, y)=1+y+x^{2}$ that lies over the rectangle with vertices $(0,0),(1,0)$ and $(1,1)$ in the $x y$-plane.
Solution: In the formula for the surface area, we need

$$
\sqrt{1+\left(f_{x}\right)^{2}+\left(f_{y}\right)^{2}}=\sqrt{1+(2 x)^{2}+1^{2}}=\sqrt{2+4 x^{2}}
$$

The integral is then

$$
\int_{0}^{1} \int_{0}^{x} \sqrt{2+4 x^{2}} d y d x=\int_{0}^{1} x \sqrt{2+4 x^{2}} d x=\frac{1}{8} \int_{2}^{6} \sqrt{u} d u=\frac{1}{8} \frac{2}{3}\left(6^{3 / 2}-2^{3 / 2}\right)=\frac{1}{12}\left(6^{3 / 2}-2^{3 / 2}\right) .
$$

