Math 2110Q Worksheet 12

October 26, 2016

1. Calculate the volume under the surface $z=4-x^{2}-y^{2}$ and above the $x y$-plane. (3 pts .)

Solution: Note that the intersection of the surface with the $x y$-plane is the circle $x^{2}+y^{2}=4$, which has radius 2. Use polar:

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{2}\left(4-r^{2}\right) r d r d \theta=2 \pi \int_{0}^{2}\left(4 r-r^{3}\right) d r & =\left.2 \pi\left(2 r^{2}-\frac{1}{4} r^{4}\right)\right|_{0} ^{2} \\
& =2 \pi(8-4)=8 \pi
\end{aligned}
$$

2. Let T be the area enclosed by the parallelogram with vertices $\{(0,0),(1,0),(1,1),(2,1)\}$. Calculate the value of the following integral. (4 pts .)

$$
\iint_{T} \frac{1}{1+y} d A
$$

Solution: This can be set up in different ways, but probably it is easiest to integrate in the x-direction first. The reason is that y is neatly bounded on the given domain between 0 and 1 , but we may express x as being bounded as $y \leq x \leq 1+y$. The integral is then

$$
\int_{0}^{1} \int_{y}^{1+y} \frac{1}{1+y} d x d y=\left.\int_{0}^{1} \frac{x}{1+y}\right|_{y} ^{1+y} d y=\int_{0}^{1} \frac{1}{1+y} d y=\left.\ln (1+y)\right|_{0} ^{1}=\ln (2)
$$

3. A curve in the $x y$-plane, described using polar coordinates, has equation $r^{2}=\sin (\theta)$, $0 \leq \theta \leq \pi$. Find the area of the region enclosed by the curve. (3 pts .)
Solution: The key is to note that r is bounded between 0 and $\sqrt{\sin (\theta)}$. Then the area, using polar coordinates, is

$$
\int_{0}^{\pi} \int_{0}^{\sqrt{\sin (\theta)}} r d r d \theta=\frac{1}{2} \int_{0}^{\pi} \sin (\theta) d \theta=-\frac{1}{2}(\cos (\pi)-\cos (0))=1
$$

