
Math 2110Q Worksheet 12
October 26, 2016

1. Calculate the volume under the surface z = 4− x2 − y2 and above the xy-plane. (3 pts.)
Solution: Note that the intersection of the surface with the xy-plane is the circle x2 + y2 = 4,
which has radius 2. Use polar:∫ 2π
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= 2π (8− 4) = 8π.

2. Let T be the area enclosed by the parallelogram with vertices {(0, 0), (1, 0), (1, 1), (2, 1)}.
Calculate the value of the following integral. (4 pts.)∫ ∫
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Solution: This can be set up in different ways, but probably it is easiest to integrate in the
x-direction first. The reason is that y is neatly bounded on the given domain between 0 and 1,
but we may express x as being bounded as y ≤ x ≤ 1 + y. The integral is then∫ 1
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3. A curve in the xy-plane, described using polar coordinates, has equation r2 = sin(θ),
0 ≤ θ ≤ π. Find the area of the region enclosed by the curve. (3 pts.)
Solution: The key is to note that r is bounded between 0 and

√
sin(θ). Then the area, using

polar coordinates, is∫ π
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