Math 2110Q Worksheet 11 Solutions

October 24, 2016

1. Find the volume of the region bounded by the following surfaces: $x=0, x=1, y=0, y=1$, $z=0$ and $z=x^{2}+y^{2}(4 \mathrm{pts})$.
Solution: This may be thought of as the volume under the surface $f(x, y)=x^{2}+y^{2}$, above the square region of the $x y$-plane with $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Thus, the volume is given by the double integral

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{1} x^{2}+y^{2} d x d y & =\left.\int_{0}^{1}\left(\frac{1}{3} x^{3}+x y^{2}\right)\right|_{0} ^{1} d y=\int_{0}^{1} \frac{1}{3}+y^{2} d y \\
& =\frac{1}{3}+\frac{1}{3}=\frac{2}{3}
\end{aligned}
$$

2. Given $f(x, y)=y \sin (x y)$ over a domain $\mathcal{D}=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq \pi / 2\}$, calculate (4 pts.)

$$
\iint_{\mathcal{D}} f(x, y) d A
$$

Solution: Write as an iterated integral, but it is easiest to do it in the following order:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \int_{0}^{1} y \sin (x y) d x d y & =\int_{0}^{\pi / 2} \int_{0}^{1} \frac{\partial}{\partial x}-\cos (x y) d x d y=\int_{0}^{\pi / 2}-\left.\cos (x y)\right|_{0} ^{1} d y \\
& =\int_{0}^{\pi / 2} 1-\cos (y) d y=\left.(y-\sin (y))\right|_{0} ^{\pi / 2}=\frac{\pi}{2}-1
\end{aligned}
$$

