Lecture 4: Cylinders, quadric surfaces and vector functions

If we translate a curve along a single direction to form a surface, this is a"cylinder".

Quadric surfaces
The term $x^{i} y^{j} z^{k}$ is of "order $i+j+k$ ", e.g. $x y^{2} z^{3}$ is "order 6". Quadric surfaces have equations with terms up to order 2 :

$$
\begin{aligned}
A x^{2} & +B y^{2}
\end{aligned}+C z^{2}+D x y+E x z+F y z=0 . H x+I z+J=0 .
$$

We can use translations and rotations to reduce to two forms:

$$
\begin{aligned}
& \text { (1) } A x^{2}+B y^{2}+C z^{2}+J=0 \\
& \text { (2) } A x^{2}+B y^{2}+I z=0
\end{aligned}
$$

There are 4 surfaces of type (1) and 2 of type (2).

Ellipsoids: $\left.\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1.\right\} \begin{aligned} & \text { STANDARD } \\ & \text { FORM }\end{aligned}$

Cross-sections are ellipses.

CONES: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}$

Hyperboloid of one sheet:

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Hyperboloid of two sheets:

$$
\frac{-x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

ELLIPTIC PARABOLOID

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \geqslant 0
$$

Hyperbolic Paraboloid:

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

Ex. 1: Classify the surfaces:
(a) $x=y^{2}-z^{2} \quad$ hyperbolic paraboloid
(b) $x^{2}+y^{2}+2 z^{2}=1 \quad$ ellipsoid
(c) $2 y=3 x^{2}+4 z^{2}$ elliptic paraboloid
(d) $\frac{1}{4} z^{2}=x^{2}+y^{2} \quad$ cone
(e) $2 x^{2}+z^{2}-3 y^{2}=-6$ two-sheet hyperboloid
(f) $z^{2}+\frac{1}{4} y^{2}-\frac{1}{9} x^{2}=1$ one-sheet hyperboloid
(g) $x^{2}+z^{2}=4 \quad$ cylinder

Ex.2: Put $45 z-10 x^{2}-18 y^{2}=0$ into standard form and sketch the graph.
Elliptic paraboloid.

$$
\begin{aligned}
& \frac{45 z}{90}-\frac{10 x^{2}}{90}-\frac{18 y^{2}}{90}=0 \\
\Rightarrow & \frac{z}{2}=\frac{x^{2}}{9}+\frac{y^{2}}{5}=\frac{x^{2}}{3^{2}}+\frac{y^{2}}{(\sqrt{5})^{2}} .
\end{aligned}
$$

Sketch:

Ex.3: What sort of surface is

$$
\frac{-(x-1)^{2}}{4}-\frac{(y+1)^{2}}{16}+z^{2}=1 ?_{0}
$$

Two-sheet hyperboloid, translated so it is centered about $x=1\{y=-1$.

Vector-valued functions

$$
\vec{\Gamma}(t)=\langle x(t), y(t), z(t)\rangle
$$

$\Rightarrow \vec{r}(t)$ is a "vector-valued" function of t.
$\vec{r}(t)$ traces out a curve in 3-D.
Ex: $\vec{r}(t)=\langle t, 2 t, 3 t+1\rangle$ is a line.

Ex: "Helix"

$$
\vec{r}(t)=\langle\cos (t), \sin (t), t\rangle .
$$

Limits are handled component-wise.

$$
\begin{aligned}
& \lim _{t \rightarrow a} \vec{\Gamma}(t) \\
& \left\langle\lim _{t \rightarrow a} x(t) \lim _{t \rightarrow a} y(t), \lim _{t \rightarrow a} z(t)\right\rangle
\end{aligned}
$$

Each of the three limits needs to exist.

Ex. 4: Find $\lim _{t \rightarrow 0} \vec{\Gamma}(t) ; \vec{r}(t)=\left\langle t, t^{2}+1, \frac{\sin (t)}{t}\right\rangle$.

$$
\begin{aligned}
\lim _{t \rightarrow 0} t & =0, \lim _{t \rightarrow 0} t^{2}+1=1, \lim _{t \rightarrow 0} \frac{\sin (t)}{t}=1 \\
& \Rightarrow \lim _{t \rightarrow 0} \vec{r}(t)=\langle 0,1,1\rangle
\end{aligned}
$$

Ex: Find $\lim _{t \rightarrow 0}\left\langle t_{1} 1+t, \sin (1 / t)\right\rangle$.

$$
\text { Limit D.N.E. since } \lim _{t \rightarrow 0} \sin \left(\frac{1}{t}\right) \text { D.N.E. }
$$

Ex. 5: Parameterize the curve formed by the intersection of

$$
z=x^{2} \&-2 y+z=0
$$

Note $z=z(x) \quad$ \& $y=\frac{1}{2} z=y(z(x))$.
So choose $x=t \Rightarrow z=t^{2}$

$$
\begin{gathered}
\vec{\Gamma}(t)=\left\langle t, \frac{1}{2} t^{2}, t^{2}\right\rangle .
\end{gathered}
$$

(\#1) Classify each sur face type:
(a) $5 x^{2}+6 y^{2}-\frac{1}{2} z^{2}=9$
(e) $\frac{x^{2}}{2}+\frac{y^{2}}{3}-z^{2}=-1$
one-sheet hypersbloid
2-sheet hyperboloid
(b) $x^{2}+y^{2}=z^{2}$
cone
(f) $\frac{z}{7}=x^{2}-y^{2}$
hiperbolic paraboloid
(c) $z=x^{2}+5$
(g) $x^{2}+y^{2}-z=0$
parabolic cylinder
(d) $x^{2}+4 y^{2}+6 z^{2}=12$

$$
(h) x^{2} / 4+y^{2} / 9=1 .
$$

ellipsoid
elliptic cylinder
(\#2) Classify...
(a) $x^{2}+6 z^{2}-2 y^{2}=1$ one-sheet hyperboloid

$$
\text { (b) } y / 5=x^{2} / 2+z^{2} / 3
$$

elliptic paraboloid

$$
\text { (c) }-x^{2}+y^{2}+z^{2}=-2
$$

2-sheet hyperboloid
(d) $z=x^{2}-2 y^{2}$
hyperbolic paraboloid
(h) $x^{2}-y^{2}-z^{2}=1$.
(e) $x^{2}+\frac{z^{2}}{2}=7$ elliptic cylinder
(f) $2 x^{2}+3 z^{2}=4 y^{2}$ elliptic cone
(g) $9 x^{2}+16 y^{2}+25 z^{2}=1$
ellipsoid

2-sheet hyperboloid
(\#3) List any/all axis intercepts:
(a) $6 x^{2}-y^{2}+z^{2}=-6$

Standard form: $-x^{2}+\frac{y^{2}}{6}-\frac{z^{2}}{6}=1$
2 -sheet hyperboloid intersects y-axis: $(0, \pm \sqrt{6}, 0)$.
(b) $y=x^{2}+2 z^{2}$-paraboloid through origin $(0,0,0)$

(\#5) Parameterize the curve formed by the intersection of $y=4 x^{2}\left\{z=1-x^{2}\right.$.

$$
\left.\begin{array}{l}
y=y(x) \quad \xi z=z(x) \\
x=t \\
y=4 t^{2} \\
z=1-t^{2}
\end{array}\right\} \vec{r}(t)=\left\langle t, 4 t^{2}, 1-t^{2}\right\rangle .
$$

