Math 1060Q Lecture 8

Jeffrey Connors
University of Connecticut

September 22, 2014

Today's topic: forming compositions of functions

-What is a composition of functions?

- Domain and range for a composition of functions
- Some examples of graphs

A composition is formed by taking the output of one function and using as the input of another.

Given $f(x)$ and $g(x)$, we denote the composition $f(g(x))$ as $(f \circ g)(x)$.

- The output of g is used as the input of f.
- For example, if $g(1)=-2$, and $f(-2)=4$, then

$$
(f \circ g)(1)=f(g(1))=f(-2)=4
$$

Example L8.1: Let $f(x)=3 / x$ and $g(x)=x^{2}+1$. Find both $f \circ g$ and $g \circ f$.
Solution: Replace the x in $f(x)$ with $x^{2}+1$:

$$
(f \circ g)(x)=f\left(x^{2}+1\right)=\frac{3}{x^{2}+1} .
$$

It often helps to use parentheses:

$$
(g \circ f)(x)=g(3 / x)=\left(\frac{3}{x}\right)^{2}+1=\frac{9}{x^{2}}+1
$$

We have already seen some compositions

Example L8.2: Write the function $h(x)=|x+3|$ as a composition of functions.
Solution: Note that the function $g(x)=x+3$ is inside the fence posts, so if $f(x)=|x|$, we have $f \circ g=h$.

Example L8.3: Write the function $h(x)=\sqrt{2 x-3}$ as a composition of functions.
Solution: So write $g(x)=2 x-3$ and take $f(x)=\sqrt{x}$. It follows that $f \circ g=h$.

Now we can also look at more complicated compositions: Example L8.4: Let $f(x)=-x^{2}+3$ and $g(x)=|x|$. Find $g \circ f$. Solution: $(g \circ f)(x)=g\left(-x^{2}+3\right)=\left|-x^{2}+3\right|$.

- What is a composition of functions?
- Domain and range for a composition of functions
- Some examples of graphs

Compositions can have "smaller" domains and ranges than

 the component functions f and gExample L8.5: Given $f(x)=\sqrt{x}$ and $g(x)=1-5 x^{2}$, find the domain and range of $f \circ g$.
Solution: First, note that the composition is $(f \circ g)(x)=\sqrt{1-5 x^{2}}$. Thus, since the argument of $f(x)$ needs to be non-negative, we must have

$$
1-5 x^{2} \geq 0 \Rightarrow x^{2} \leq \frac{1}{5} \Rightarrow-\sqrt{\frac{1}{5}} \leq x \leq \sqrt{\frac{1}{5}}
$$

Thus, $\mathcal{D}=[-\sqrt{1 / 5}, \sqrt{1 / 5}]$. The smallest value $f \circ g$ can have is 0 . The largest is the square root of the largest value for the parabola $1-5 x^{2}$ for $-\sqrt{1 / 5} \leq x \leq \sqrt{1 / 5}$. This occurs at the vertex of the parabola; $(x=0, y=1)$. Thus, $\mathcal{R}=[0,1]$.

Another example...

Example L8.6: Given $f(x)=\sqrt{x}$ and $g(x)=\left|1-5 x^{2}\right|$, find the domain and range for both $f \circ g$ and $g \circ f$.

Solution: We note $(f \circ g)(x)=\sqrt{\left|1-5 x^{2}\right|}$. We need the argument for $f(x)$ to be non-negative, but since the range of g is non-negative it works out and the domain is \mathbb{R}. Furthermore, the range of g is $[0, \infty)$, which is the full domain of $f(x)$, thus the range of $f \circ g$ is also $[0, \infty)$.

Now note that $(g \circ f)(x)=\left|1-5(\sqrt{x})^{2}\right|$. We are restricted to a domain of $[0, \infty)$ since \sqrt{x} requires non-negative inputs. Therefore, we could simplify: $(g \circ f)(x)=|1-5 x|$. The range of this will be $[0, \infty)$ due to the absolute value.

- What is a composition of functions?
- Domain and range for a composition of functions
- Some examples of graphs

Note that $|x|$ makes things non-negative; on a graph it takes all y-values and flips them above the x-axis

One could also look at $\sqrt{|x|}$, which has domain \mathbb{R} now.

Think about the graph to figure out domain and range.

Example L8.7: Find the domain and range of $f \circ g$ if $f(x)=1 / x$ and $g(x)=\left|(x+2)^{2}-1\right|$.
Solution: Let us plot $f \circ g$. First, we plot $g(x)$, which is found by plotting the parabola $y=(x+2)^{2}-1$ and then flipping any negative y-values up above the x-axis.

Think about the graph to figure out domain and range.
Example L8.7: Find the domain and range of $f \circ g$ if $f(x)=1 / x$ and $g(x)=\left|(x+2)^{2}-1\right|$.

Think about the graph to figure out domain and range.

Example L8.7: Find the domain and range of $f \circ g$ if $f(x)=1 / x$ and $g(x)=\left|(x+2)^{2}-1\right|$.
Now we note that $f \circ g$ is the reciprocal of g, so we apply our guidelines to plot the reciprocal:

- Wherever $g \rightarrow \pm \infty$, we have $f \circ g \rightarrow 0$.
- Note $f \circ g=g$ whenever $g=1$.
- $f \circ g$ and g always have the same sign (positive).
- $f \circ g$ is very big when g is very small and vice-versa.
- $f \circ g$ is undefined where $g=0$; at these points we get vertical asymptotes.

Think about the graph to figure out domain and range.
Example L8.7: Find the domain and range of $f \circ g$ if $f(x)=1 / x$ and $g(x)=\left|(x+2)^{2}-1\right|$.
The domain is $(-\infty,-3) \cup(-3,-1) \cup(-1, \infty)$. The range is $(0, \infty)$.

Practice!

Problem L8.1: Evaluate $(f \circ g)(1)$ if $g(x)=x \sqrt{3}$ and $f(x)=\sqrt{1+x^{2}}$.

Problem L8.2: Find the domain of $f \circ g$ if $f(x)=\sqrt{x-2}$ and $g(x)=2 x^{2}-4 x+2$.

Problem L8.3: Find two functions $f(x)$ and $g(x)$ such that $(f \circ g)(x)=\sqrt{x+12}$.

Problem L8.4: Let $f(x)=x^{2}+1$. What is $f \circ f$? What is $f \circ f \circ f$?

