Math 1060Q Lecture 7

Jeffrey Connors

University of Connecticut

September 17, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We shall discuss how to add, subtract, multiply and divide two functions and start thinking about the resulting graphs

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal

Here is the notation for the four operations combining two functions.

Sometimes when the meaning of functions f(x) and g(x) is clear we drop the *argument* notationally, so the following may be encountered:

$$f+g$$
 $f-g$ $f\cdot g$ $\frac{f}{g}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generally, the domain of the new function will be the intersection of the domains of f and g, with one exception.

Let \mathcal{D}_f be the domain of f(x) and \mathcal{D}_g be the domain of g(x). We have the following:

- The domain of f + g is $\mathcal{D}_f \cap \mathcal{D}_g$.
- The domain of f g is $\mathcal{D}_f \cap \mathcal{D}_g$.
- The domain of $f \cdot g$ is $\mathcal{D}_f \cap \mathcal{D}_g$.
- ▶ The domain of *f*/*g* is

$$\{x \text{ in } \mathcal{D}_f \cap \mathcal{D}_g \mid g(x) \neq 0\}.$$

So x will be in the domain only if it is already in both original domains \mathcal{D}_f and \mathcal{D}_g ... then just remember you also can't divide by zero.

Examples...

Example L7.1: Let $f(x) = x^2 + 6x - 4$ and $g(x) = 9 - 6x^2$. Find the new functions f + g, f - g, $f \cdot g$ and f/g along with their domains.

Solution: we have

$$f + g = -5x^{2} + 6x + 5, \quad f - g = 7x^{2} + 6x - 13,$$

$$f \cdot g = (x^{2} + 6x - 4)(9 - 6x^{2}), \quad \frac{f}{g} = \frac{x^{2} + 6x - 4}{9 - 6x^{2}}.$$

The domains are just \mathbb{R} , except in case of f/g. There, we must remove anywhere g(x) = 0:

$$9-6x^2=0 \Rightarrow x^2=rac{9}{6}=rac{3}{2} \Rightarrow x=\pm\sqrt{rac{3}{2}}.$$

So the domain for f/g is $\{x \mid x \neq \pm \sqrt{3/2}\}$.

Examples...

Example L7.2: Let $f(x) = x^2 - 3x + 2$ and $g(x) = \sqrt{x + 12}$. Find the domains of $f \pm g$, $f \cdot g$ and f/g. Solution: Note that $\mathcal{D}_f = \mathbb{R}$ and $\mathcal{D}_g = [-12, \infty)$. In the case of $f \pm g$ and $f \cdot g$ it follows that the domain is

$$\mathcal{D}_f \cap \mathcal{D}_g = [-12,\infty).$$

A modification is needed in the case of f/g, since g(-12) = 0, so then the domain is

$$(-12,\infty).$$

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product

・ロト ・西ト ・ヨト ・ヨー うらぐ

Given x, $f \pm g$ is found by adding or subtracting y-values

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product

・ロト ・西ト ・ヨト ・ヨー うらぐ

You can think of one function as a vertical stretching factor for the other; if the factor is negative, you also get a "flip"

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product

・ロト ・西ト ・ヨト ・ヨー うらぐ

The reciprocal of f(x) is g(x) = 1/f(x).

Some guidelines to graph the reciprocal:

- Wherever $f \to \pm \infty$, we have $g \to 0$.
- Note f = g whenever $f = \pm 1$.
- f and g always have the same sign.
- f is very big when g is very small and vice-versa.
- g is undefined where f = 0; at these points we get vertical asymptotes.

Example L7.3: Sketch the inverse of $f(x) = x^2 + 2x - 3$.

- ► This parabola opens "up" and goes to ∞ as x → ±∞. Thus the reciprocal goes to zero as x → ±∞.
- Graphs of f and 1/f will cross at heights $y = \pm 1$.
- Note f = 0 = x² + 2x − 3 = (x + 3)(x − 1) for x = −3 and x = 1. We have vertical asymptotes at these positions.
- Since f is very small near the asymptototes, the graph of 1/f "blows up" and follows the asymptotes vertically.

Example L7.3: Sketch the inverse of $f(x) = x^2 + 2x - 3$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Practice!

Problem L7.1: Find the domains of the functions $f \cdot g$ and f/g, where $f(x) = -3x^2$ and $g(x) = \sqrt{x+1}$.

Problem L7.2: Find the domains of the functions f + g and f/g, where $f(x) = \sqrt{1-x}$ and $g(x) = 4x^2 + 4x - 3$.

Problem L7.3: Sketch the graph of the reciprocal of f if $f(x) = -(x-2)^2 + 4$.