Math 1060Q Lecture 7

Jeffrey Connors
University of Connecticut

September 17, 2014

We shall discuss how to add, subtract, multiply and divide two functions and start thinking about the resulting graphs

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal functions.
- $f(x)+g(x)=(f+g)(x)$
- $f(x)-g(x)=(f-g)(x)$
- $f(x) \cdot g(x)=(f \cdot g)(x)$
- $f(x) / g(x)=(f / g)(x)$

Sometimes when the meaning of functions $f(x)$ and $g(x)$ is clear we drop the argument notationally, so the following may be encountered:

$$
f+g \quad f-g \quad f \cdot g \quad \frac{f}{g}
$$

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal

Generally, the domain of the new function will be the

 intersection of the domains of f and g, with one exception.Let \mathcal{D}_{f} be the domain of $f(x)$ and \mathcal{D}_{g} be the domain of $g(x)$. We have the following:

- The domain of $f+g$ is $\mathcal{D}_{f} \cap \mathcal{D}_{g}$.
- The domain of $f-g$ is $\mathcal{D}_{f} \cap \mathcal{D}_{g}$.
- The domain of $f \cdot g$ is $\mathcal{D}_{f} \cap \mathcal{D}_{g}$.
- The domain of f / g is

$$
\left\{x \text { in } \mathcal{D}_{f} \cap \mathcal{D}_{g} \mid g(x) \neq 0\right\}
$$

So x will be in the domain only if it is already in both original domains \mathcal{D}_{f} and $\mathcal{D}_{g} \ldots$ then just remember you also can't divide by zero.

Examples...

Example L7.1: Let $f(x)=x^{2}+6 x-4$ and $g(x)=9-6 x^{2}$. Find the new functions $f+g, f-g, f \cdot g$ and f / g along with their domains.
Solution: we have

$$
\begin{aligned}
f+g & =-5 x^{2}+6 x+5, \quad f-g=7 x^{2}+6 x-13 \\
f \cdot g & =\left(x^{2}+6 x-4\right)\left(9-6 x^{2}\right), \quad \frac{f}{g}=\frac{x^{2}+6 x-4}{9-6 x^{2}}
\end{aligned}
$$

The domains are just \mathbb{R}, except in case of f / g. There, we must remove anywhere $g(x)=0$:

$$
9-6 x^{2}=0 \Rightarrow x^{2}=\frac{9}{6}=\frac{3}{2} \Rightarrow x= \pm \sqrt{\frac{3}{2}}
$$

So the domain for f / g is $\{x \mid x \neq \pm \sqrt{3 / 2}\}$.

Examples...

Example L7.2: Let $f(x)=x^{2}-3 x+2$ and $g(x)=\sqrt{x+12}$. Find the domains of $f \pm g, f \cdot g$ and f / g.
Solution: Note that $\mathcal{D}_{f}=\mathbb{R}$ and $\mathcal{D}_{g}=[-12, \infty)$. In the case of $f \pm g$ and $f \cdot g$ it follows that the domain is

$$
\mathcal{D}_{f} \cap \mathcal{D}_{g}=[-12, \infty)
$$

A modification is needed in the case of f / g, since $g(-12)=0$, so then the domain is

$$
(-12, \infty)
$$

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal

Given $x, f \pm g$ is found by adding or subtracting y-values

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal

You can think of one function as a vertical stretching factor for the other; if the factor is negative, you also get a "flip"

- Some function notation
- Domain of new function
- Graphing sums and differences
- Example of graphing a product
- Graphing the reciprocal

The reciprocal of $f(x)$ is $g(x)=1 / f(x)$.

Some guidelines to graph the reciprocal:

- Wherever $f \rightarrow \pm \infty$, we have $g \rightarrow 0$.
- Note $f=g$ whenever $f= \pm 1$.
- f and g always have the same sign.
- f is very big when g is very small and vice-versa.
- g is undefined where $f=0$; at these points we get vertical asymptotes.

Example L7.3: Sketch the inverse of $f(x)=x^{2}+2 x-3$.

- This parabola opens "up" and goes to ∞ as $x \rightarrow \pm \infty$. Thus the reciprocal goes to zero as $x \rightarrow \pm \infty$.
- Graphs of f and $1 / f$ will cross at heights $y= \pm 1$.
- Note $f=0=x^{2}+2 x-3=(x+3)(x-1)$ for $x=-3$ and $x=1$. We have vertical asymptotes at these positions.
- Since f is very small near the asymptototes, the graph of $1 / f$ "blows up" and follows the asymptotes vertically.

Example L7.3: Sketch the inverse of $f(x)=x^{2}+2 x-3$.

Practice!

Problem L7.1: Find the domains of the functions $f \cdot g$ and f / g, where $f(x)=-3 x^{2}$ and $g(x)=\sqrt{x+1}$.

Problem L7.2: Find the domains of the functions $f+g$ and f / g, where $f(x)=\sqrt{1-x}$ and $g(x)=4 x^{2}+4 x-3$.

Problem L7.3: Sketch the graph of the reciprocal of f if $f(x)=-(x-2)^{2}+4$.

