Math 1060Q Lecture 5

Jeffrey Connors
University of Connecticut

September 10, 2014

Today we discuss "quadratic" equations

1. What is a quadratic equation?
2. Vertical and horizontal shifts
3. Vertical stretching of graphs
4. Standard form of a quadratic equation
5. The quadratic formula

Quadratic equations look like $y=a x^{2}+b x+c$.

Two simple examples: $y=x^{2}$ (left) and $y=-x^{2}$ (right).

Before discussing the general case, let us build up our intuition.

1. What is a quadratic equation?
2. Vertical and horizontal shifts
3. Vertical stretching of graphs
4. Standard form of a quadratic equation
5. The quadratic formula

Consider a general graph of $f(x)$. Adding or subtracting from f creates a vertical shift.

- $g(x)=f(x)+a$ moves the graph of f up by $a>0$ units.
- $g(x)=f(x)-a$ moves the graph of f down by $a>0$ units.

Adding or subtracting from the argument x creates a horizontal shift.

- $g(x)=f(x-a)$ moves the graph of f right by $a>0$ units.
- $g(x)=f(x+a)$ moves the graph of f left by $a>0$ units.

1. What is a quadratic equation?
2. Vertical and horizontal shifts
3. Vertical stretching of graphs
4. Standard form of a quadratic equation
5. The quadratic formula

If we multiply the whole function $f(x)$ by a factor $a>0$, it "stretches" or "shrinks" the graph

- If $a>1$ then $|a f(x)|>|f(x)|$; the y-values get bigger.
- If $1>a>0$ then $|a f(x)|<|f(x)|$; the y-values get smaller.

Summary of graph operations

- $f(x)+a$: moves graph up by a units
- $f(x)-a$: moves graph down by a units
- $f(x-a)$: moves graph to the right by a units
- $f(x+a)$: moves graph to the left by a units
- $a f(x)$: stretch (or shrink) vertically by factor of a

1. What is a quadratic equation?
2. Vertical and horizontal shifts
3. Vertical stretching of graphs
4. Standard form of a quadratic equation
5. The quadratic formula

The standard form of a quadratic equation is more informative than $y=a x^{2}+b x+c$.

- The standard form is $y=a\left(x-x_{0}\right)^{2}+y_{0}$.
- Here $\left(x_{0}, y_{0}\right)$ is the vertex or base of the parabola.
- If $a>0$ the parabola "opens up"; if $a<0$ the parabola "opens down".

It is easy to understand graphs of quadratics from the standard form.

Example L5.1: Graph $f(x)=-3(x+1)^{2}-4$.
Solution: We will do this the "long" way for illustration. Start with $y=-x^{2}$, because the parabola we want opens down:

Solution to L5.1: Next, multiply (stretch vertically) by 3.

Solution to L5.1: Now shift left 1 unit by replacing x with $x+1$.

Solution to L5.1: Last step: subtract 4 from the function to shift downwards.

Note that we can complete the square to get a quadratic into standard form.

We need a slight extension of the procedure: start with $y=a x^{2}+b x+c$.

1. Factor a out of the first two terms: $y=a\left(x^{2}+\frac{b}{a} x\right)+c$.
2. Inside the parentheses: add and subtract $(b /(2 a))^{2}$:

$$
y=a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c
$$

3. Replace the first three terms inside the parentheses with $(x+b / 2 a)^{2}$:

$$
y=a\left(\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c
$$

Note that we can complete the square to get a quadratic into standard form.
4. Distribute the a through across the subtraction:

$$
\begin{aligned}
y & =a\left(x+\frac{b}{2 a}\right)^{2}-a\left(\frac{b}{2 a}\right)^{2}+c \\
& =a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c
\end{aligned}
$$

Example L5.2: Find the standard form of the quadratic $f(x)=2 x^{2}-4 x+7$.
Solution: Follow the procedure...

$$
\begin{aligned}
2 x^{2}-4 x+7 & =2\left(x^{2}-2 x\right)+7 \\
& =2\left(x^{2}-2 x+(-2 / 2)^{2}-(-2 / 2)^{2}\right)+7 \\
& =2\left((x-1)^{2}-1\right)+7=2(x-1)^{2}-2+7 \\
& =2(x-1)^{2}+5
\end{aligned}
$$

Example L5.3: Find the standard form of the quadratic $f(x)=-3 x^{2}-24 x-41$.

Solution:

$$
\begin{aligned}
-3 x^{2}-24 x-41 & =-3\left(x^{2}+8 x\right)-41 \\
& =-3\left(x^{2}+8 x+4^{2}-4^{2}\right)-41 \\
& =-3\left((x+4)^{2}-16\right)-41 \\
& =-3(x+4)^{2}+48-41=-3(x+4)^{2}+7
\end{aligned}
$$

What is the vertex of the parabola? It is $(-4,7)$.

1. What is a quadratic equation?
2. Vertical and horizontal shifts
3. Vertical stretching of graphs
4. Standard form of a quadratic equation
5. The quadratic formula

What are the x-intercepts for a parabola? The quadratic formula answers this precisely!

Let us have a quadratic in the form $y=a x^{2}+b x+c$. Then there is a formula for the x intercepts:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Note that the " \pm " sign means both add and subtract (possibly two answers).

- Call $D=b^{2}-4 a c$ the discriminant.
- There are three scenarios to remember here: $D>0, D<0$ and $D=0$.

1. $D>0$ means two distinct x-intercepts.
2. $D=0$ means exactly one x-intercept.
3. $D<0$ means no x-intercepts.
"Roots" of $f(x)$ are the x-values for which $f(x)=0$.

The roots of $f(x)$ are where $y=f(x)=0$, i.e. the x-intercepts of $f(x)$. Therefore, if $f(x)$ is a quadratic, then the roots are given by the quadratic formula.

Example L5.4: Find the roots of $f(x)=2 x^{2}-12 x+18$. Solution: In this case we have $a=2, b=-12$ and $c=18$. The discriminant is $D=(-12)^{2}-4(2)(18)=144-144=0$. Thus there is one root: $x=-b / 2 a=12 / 4=3$.

Examples...

Example L5.5: Find the roots of $f(x)=x^{2}+2 x+2$.
Solution: The discriminant is $D=2^{2}-4(1)(2)=4-8=-4<0$, therefore there are no roots.

Example L5.6: Find the roots of $f(x)=-3 x^{2}+3 x+6$.
Solution: Here $a=-3, b=3$ and $c=6$ so that $D=3^{2}-4(-3)(6)=9+72=81$. Hence

$$
x=\frac{-b \pm \sqrt{D}}{2 a}=\frac{-3 \pm \sqrt{81}}{-6}=\frac{-3 \pm 9}{-6}
$$

The roots are $x_{1}=2$ and $x_{2}=-1$.

Practice!

Problem L5.1: Sketch the parabola for $f(x)=(x+1)^{2}-2$.
Problem L5.2: Put the following into standard form:
$y=6 x^{2}-12 x+7$.
Problem L5.3: Find the roots of the quadratic: $y=2 x^{2}-x-1$.
Problem L5.4: Find the roots of the quadratic: $y=4 x^{2}-4 x+3$.
Problem L5.5: Find the roots of the quadratic: $y=4 x^{2}-4 x+1$.

