Math 1060Q Lecture 4

Jeffrey Connors
University of Connecticut

September 8, 2014

Today we discuss more on functions

- Identifying the domain and range
- Odd and even functions
- Methods for graphing functions
- Equations for lines
- Parallel and perpendicular lines

The domain of $f(x)$ means what inputs x are allowed. The range means all the resulting values for f.

- \mathcal{D} : the domain.
- \mathcal{R} : the range.

Example L3.1: Find the domain and range of $f(x)=\frac{1}{x}$.
Solution: We can perform the operation $1 / x$ for any number x except $x=0$. Therefore,

$$
\mathcal{D}=\{x \mid x \neq 0\}=(-\infty, 0) \cup(0, \infty)
$$

To find the range, ask for which y there is some $x \neq 0$ and $y=1 / x$. Then try to find x in terms of $y: x=1 / y$ works if $y \neq 0$. Therefore,

$$
\mathcal{R}=\{y \mid y \neq 0\}=(-\infty, 0) \cup(0, \infty)
$$

More examples would probably help...

Example L3.2: Find the domain and range of $f(x)=x^{2}$.
Solution: Is there any value x that we cannot multiply by itself to get x^{2} ? (No) Therefore, $\mathcal{D}=\mathbb{R}$. However, we know $y=x^{2} \geq 0$ is always true, thus $\mathcal{R}=[0, \infty)$.

Example L3.3: Find the domain and range of $f(x)=5 x$. Solution: Is there any value x that we cannot multiply by 5 ? (No) Therefore, $\mathcal{D}=\mathbb{R}$. Also, we may always find x such that $y=5 x$ by simply taking $x=y / 5$. Therefore, $\mathcal{R}=\mathbb{R}$.

We can read domains and ranges off of graphs too.
In this graph, we have $\mathcal{D}=(-2,-1) \cup[0,2]$ and
$\mathcal{R}=[-3 / 2,-1) \cup[0,2]$.

- Identifying the domain and range
- Odd and even functions
- Methods for graphing functions
- Equations for lines
- Parallel and perpendicular lines

Some special cases are "odd" and "even" functions.

Definition (Odd function)

A function $f(x)$ is odd if $f(-x)=-f(x)$ for all x.
Definition (Even function)
A function $f(x)$ is even if $f(-x)=f(x)$ for all x.
Example L3.4: Show that $f(x)=2 x$ is an odd function.
Solution: Just check what happens when we insert $-x$ instead of x :

$$
f(-x)=2(-x)=-2 x=-(2 x)=-f(x)
$$

Example L3.5: Show that $f(x)=x^{2}+1$ is an even function. Solution: Just check what happens when we insert $-x$ instead of x :

$$
f(-x)=(-x)^{2}+1=x^{2}+1=f(x)
$$

It is very easy to spot odd or even functions if you have their graphs.

- Identifying the domain and range
- Odd and even functions
- Methods for graphing functions
- Equations for lines
- Parallel and perpendicular lines

You need to set up your axes first, but how will you choose scaling and ranges for tick marks?

It helps to first collect the following information:

1. Domain and range
2. x-intercepts and y-intercepts
3. Local maximum and minimum points
4. Also any symmetry, for the shape of the graph.

Consider the graph of $f(x)=\frac{x^{2}-1}{x^{4}+1}$. In this case, the following hold:

- $\mathcal{D}=\mathbb{R}, \mathcal{R} \approx(-1,0.21)$.
- y-intercept at $(0,-1)$ and x-intercepts at $(\pm 1,0)$.
- Local minimum at $(0,-1)$.
- Local maximum points at around $(\pm 0.55,0.21)$.
- y-axis symmetry.

Here is the graph

-4-3-2

- Identifying the domain and range
- Odd and even functions
- Methods for graphing functions
- Equations for lines
- Parallel and perpendicular lines

We frequently encounter "linear" relationships between

 two quantities.A linear relationship exists if a change in one quantity is related to a change in a other quantity by a constant amount.

- Force is mass multiplied by acceleration; $F=m a$.
- Tax T is the tax rate r multiplied by income $/$ less credits c;

$$
T=r(I-c)
$$

We will now let x and y be the two quantities and explore two main expressions of a linear relationship:

$$
\begin{aligned}
y & =m x+b \quad(\text { slope-intercept form }) \\
y-y_{0} & =m\left(x-x_{0}\right) \quad \text { (point-slope form) }
\end{aligned}
$$

The slope is m and measures how fast y can change relative to a change in x :

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Lines with positive slope go "up" from left to right; those with negative slope go down

Slope-intercept form

The y-intercept is $(0, b)$.

So one calculates m and b, then plugs them into the formula

$$
y=m x+b
$$

Some examples.

Example L3.6: What are the slope and y-intercept of the line given by

$$
2 y=4 x+10
$$

Solution: Put into slope-intercept form by dividing through by 2 :

$$
y=2 x+5
$$

The slope is $m=2$ and the y-intercept is $(0,5)$.
Example L3.7: If a line has slope -3 and y-intercept $(0,1)$, what is an equation for the line?
Solution: $m=-3$ and $b=1$, so $y=-3 x+1$.

Point-slope form is better if you want to know what line passes through two arbitrary points.

Consider the line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$. Then the slope of the line is given by

$$
m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
$$

One you have this, it is not immediately clear what the y-intercept is, so you cannot yet use slope-intercept form. The quick solution is to pick one of the two points, call this $\left(x_{0}, y_{0}\right)$, and plug into the point-slope formula:

$$
y-y_{0}=m\left(x-x_{0}\right)
$$

In other words, either write

$$
y-y_{1}=m\left(x-x_{1}\right) \text { or else } y-y_{2}=m\left(x-x_{2}\right)
$$

These two equations are equivalent.

Examples...

Example L3.8: Find the equation of the line passing through $(3,-1)$ and $(-1,2)$.
Solution: The slope is

$$
m=\frac{2-(-1)}{-1-3}=\frac{3}{-4}=-\frac{3}{4}
$$

Choose $\left(x_{0}, y_{0}\right)=(3,-1)$ and apply point-slope:

$$
y-(-1)=y+1=-\frac{3}{4}(x-3)
$$

Example L3.9: Find the equation of the line passing through $(-2,5)$ with slope $m=17$.
Solution: The slope and a point that the line passes through are both given, so we simply apply the point-slope formula to get

$$
y-5=17(x+2)
$$

- Identifying the domain and range
- Odd and even functions
- Methods for graphing functions
- Equations for lines
- Parallel and perpendicular lines

Parallel lines have the same slope

Example: $y=2 x+1$ and $y=2 x-1$.

Perpendicular lines lie at right angles to each other. If one has slope m, the other has slope $-1 / m$.

Example: $y=2 x$ and $y=-\frac{1}{2} x$.

Practice! More on next slide...

Problem L4.1: What is the domain of $f(x)=\frac{x-1}{x+1}$?
Problem L4.2: What are the domain and range of the function?

Practice!

Problem L4.3: Is the function $f(x)=x^{3}$ even? odd? What about $f(x)=x^{4}$?

Problem L4.4: Find the equation of the line with slope 4 and y-intercept at $(0,8)$.

Problem L4.5: Find the line passing through $(2,3)$ and perpendicular to $y=-6 x+4$.

Problem L4.6: Find the line passing through $(1,2)$ and parallel $y=-6 x+4$.

