Math 1060Q Lecture 3

Jeffrey Connors
University of Connecticut

September 3, 2014

Today we discuss equations, graphs and functions

- Conditional equations
- x and y intercepts
- Symmetry
- Definition: what is a function?
- Vertical line test

Some equations always hold (identities), others only hold for certain values of x (conditional)

Here is an identity:

$$
\frac{(x-1)\left(x^{2}+1\right)}{x^{2}+1}=x-1
$$

This equation is true for every real number x. An example of a conditional equation would be:

$$
x^{2}-5 x=-6
$$

In order to find for which values x this holds, proceed as follows:

$$
\begin{aligned}
x^{2}-5 x+6 & =0 \Rightarrow(x-3)(x-2)=0 \\
\Rightarrow x & =3 \text { or } x=2
\end{aligned}
$$

We will study methods to solve certain equations as the semester progresses.

- Conditional equations
- x and y intercepts
- Symmetry
- Definition: what is a function?
- Vertical line test

It is often useful to graph equations

Consider an equation with both x and y, such as $y=x+1$. We graph this by marking all points in the $x y$-plane that satisfy the equation:

You will want to be able to identify x and y intercepts
An x-intercept is anywhere the graph crosses the x-axis. Similary, a y-intercept is anywhere the graph crosses the y-axis.

Example L3.1: Find the x and y intercepts for the graph of the equation $2 y=5 x-3$.
Solution: To find the x-intercept, we set $y=0$ and see that

$$
0=5 x-3 \Rightarrow x=\frac{3}{5}
$$

The x-intercept is at the point $(3 / 5,0)$ on the graph. To find the y-intercept, set $x=0$ and solve for y :

$$
2 y=-3 \Rightarrow y=-3 / 2
$$

The y-intercept is at the point $(0,-3 / 2)$.

- Conditional equations
- x and y intercepts
- Symmetry
- Definition: what is a function?
- Vertical line test

Three common types of symmetry found in graphs are (1) x-axis symmetry, (2) y-axis symmetry and (3) origin symmetry
x-axis symmetry just means the graph looks like it is mirrored across the x-axis, e.g.

y-axis symmetry just means the graph looks like it is mirrored across the y-axis

Origin symmetry means the graph looks the same if it is rotated by 180 degrees about the origin

- Conditional equations
- x and y intercepts
- Symmetry
- Definition: what is a function?
- Vertical line test

A function takes in a number, performs some operation, and outputs the result

Definition (Function)
A function from a set X to a set Y is a rule that assigns each element in X to precisely one element in Y.
Consider that the volume V of a sphere is calculated in terms of its radius r as $V=\frac{4}{3} \pi r^{3}$. We say that $V=V(r)$, meaning V is a function of r.

$$
\begin{aligned}
& V(1)=\frac{4}{3} \pi(1)^{3}=\frac{4}{3} \pi \\
& V(2)=\frac{4}{3} \pi(2)^{3}=\frac{4}{3} \pi 8=\frac{32}{3} \pi \\
& V(3)=\frac{4}{3} \pi(3)^{3}=\frac{4}{3} \pi 27=\frac{108}{3} \pi
\end{aligned}
$$

If a rule assigns one number in X to more than one number in Y, it is not a function

- Conditional equations
- x and y intercepts
- Symmetry
- Definition: what is a function?
- Vertical line test

Given graphs as below, $f(x)$ is a function ONLY if an arbitrary vertical line intersects the graph exactly one time

Practice problems! More on next slide...

Problem L3.1: Find any x or y intercepts for the graph of
$-2 y+6 x=4$.
Problem L3.2: What kinds of symmetry do these graphs have (if any)?

Practice problems!

Problem L3.3: Which of these are functions?

Problem L3.4: Find any x or y intercepts for the graph of $y=x^{2}-4$.

