Math 1060Q Lecture 21

Jeffrey Connors
University of Connecticut

November 19, 2014

Logarithm function: another important special function

- Definition of a logarithmic function
- The graph of $\log _{a}(x)$.
- Properties of logarithmic functions.
- The natural logarithmic function.

The logarithm function is the inverse of the exponential function.

The statement

$$
f(x)=\log _{a}(x)=y
$$

means precisely that

$$
a^{y}=x
$$

We take $a>1$; this is the "base" of the logarithm.
Examples:

$$
\begin{aligned}
\log _{2}(4) & =2 \\
\log _{2}(8) & =3 \\
\log _{2}(16) & =4 \\
\log _{3}(9) & =2
\end{aligned}
$$

Some attributes of these functions.

- Note that $\log _{a}(1)=0$, always.
- These functions can have negative values (when x is a fraction). For example,

$$
\log _{2}\left(\frac{1}{2}\right)=\log _{2}\left(2^{-1}\right)=-1
$$

- The domain is restricted to $x>0$;

$$
\log _{a}(x)=y \Rightarrow a^{y}=x \leq 0
$$

is not possible, since $a^{y}>0$ (remember?).

- Definition of a logarithmic function
- The graph of $\log _{a}(x)$.
- Properties of logarithmic functions.
- The natural logarithmic function.

Take careful note of the details in the graph.

For graphing, it may help to remember a^{x} and $\log _{a}(x)$ are inverses.

- Definition of a logarithmic function
- The graph of $\log _{a}(x)$.
- Properties of logarithmic functions.
- The natural logarithmic function.

The following are quite useful identities.

$$
\begin{aligned}
\log _{a}(1) & =0 \\
\log _{a}(a) & =1 \\
\log _{a}\left(x_{1} x_{2}\right) & =\log _{a}\left(x_{1}\right)+\log _{a}\left(x_{2}\right) \\
\log _{a}\left(x_{1} / x_{2}\right) & =\log _{a}\left(x_{1}\right)-\log _{a}\left(x_{2}\right) \\
\log _{a}\left(x^{r}\right) & =r \log _{a}(x)
\end{aligned}
$$

Some examples:

$$
\begin{aligned}
\log _{4}(1) & =0 \\
\log _{7}(7) & =1 \\
\log _{8}(3 \cdot 5) & =\log _{8}(3)+\log _{8}(5) \\
\log _{2}(5 / 3) & =\log _{2}(5)-\log _{2}(3) \\
\log _{3}\left(8^{4}\right) & =4 \log _{3}(8)
\end{aligned}
$$

Some further examples to illustrate applications.

Example L21.1: Solve $\log _{3}(x+1)=-1$.
Solution: By definition of the logarithm function, we must have

$$
3^{-1}=\frac{1}{3}=x+1 \Rightarrow x=\frac{1}{3}-1=-\frac{2}{3}
$$

Example L21.2: Solve $\log _{2}(x-2)+\log _{2}(x)=3$.
Solution: We may combing these logarithms;

$$
\log _{2}(x-2)+\log _{2}(x)=\log _{2}((x-2) x)=3 \Rightarrow 2^{3}=8=(x-2) x .
$$

Solve for x (it is quadratic)

$$
x^{2}-2 x-8=0=(x-4)(x+2)
$$

so $x=-2$ or $x=4$. CHECK if these solve the original equation!
Note that $x=4$ is fine, but $x=-2$ does not work!

- Definition of a logarithmic function
- The graph of $\log _{a}(x)$.
- Properties of logarithmic functions.
- The natural logarithmic function.

The natural logarithm is the inverse of the natural exponential function.

$$
y=\ln (x) \Longleftrightarrow e^{y}=x
$$

Note the special notation $\log _{e}(x)=\ln (x)$. Also note that

- $\ln \left(e^{x}\right)=x$ always holds.
- $e^{\ln (x)}=x$ for $x>0$, since the domain of $\ln (x)$ is $x>0$.

Example L21.3: Solve $\ln (5 x+2)=1$.
Solution: It follows that $e^{1}=e=5 x+2$. Therefore, $x=(e-2) / 5$.

Note here how we may use logarithms to solve equations involving exponential functions.

Example L21.4: Solve $2 e^{x^{2}-1}=10$.
Solution: First, divide through by 2: $e^{x^{2}-1}=5$. We may take the natural logarithm of both sides of the equation; they must be equal.

$$
\ln \left(e^{x^{2}-1}\right)=x^{2}-1=\ln (5)
$$

Now we simply solve for $x: x= \pm \sqrt{1+\ln (5)}$. Both of these are valid solutions (plug into original equation to check), since the domain of e^{x} is not restricted.

The graph is easy to understand; we are just talking about using the base $a=e$ for $\log _{a}(x)$.

It is often convenient to convert from base a to base e, as shown below.

To convert an exponential:

$$
a^{x}=e^{x \ln (a)}
$$

To convert a logarithm:

$$
\log _{a}(x)=\frac{\ln (x)}{\ln (a)} .
$$

Examples:

$$
\begin{aligned}
2^{x} & =e^{x \ln (2)} \\
\log _{3}(x) & =\frac{\ln (x)}{\ln (3)}
\end{aligned}
$$

Practice!

Problem L21.2: Solve for x : $\log _{2}(x+1)=-1$.
Problem L21.3: Solve for $x: \ln (x-1)+\ln (x+1)=\ln (8)$.
Problem L21.4: Solve for $x: \log _{3}(5 x+10)-\log _{3}(x-2)=2$.

