Math 1060Q Lecture 2

Jeffrey Connors
University of Connecticut

August 27, 2014

Today we explore sets of points in the $X-Y$ plane

1. The coordinate plane
2. Distance between points
3. Circles: standard equation and graph
4. Completing the square

The coordinate plane is a way to visualize pairs of numbers and relationships between numbers

- A coordinate pair is denoted by (x, y); for example in the following plot are shown $\{(3 / 2,1),(-2,1 / 2),(0,-1 / 2)\}$.
- The x-value is the position along the horizontal axis.
- The y-value is the position along the vertical axis.

We shade in regions to denote sets of coordinates that satisfy certain criteria

Here we visualize $\{(x, y) \mid y>1\}$. A dotted line reminds us that points with $y=1$ are not included in this set.

We shade in regions to denote sets of coordinates that satisfy certain criteria

Here we visualize $\{(x, y) \mid y \geq 1\}$. A solid line reminds us that points with $y=1$ are included in this set.

We can specify more complicated regions, such as in this example.

Example L2.1: Shade the region of points $\{(x, y) \mid x>1$ and $x \leq y\}$.

1. The coordinate plane
2. Distance between points
3. Circles: standard equation and graph
4. Completing the square

Given two points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ there is a formula for the distance between the points.

The formula is: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
Example L2.2: Find the distance between points $(1,1)$ and $(3,2)$. Solution: Take $\left(x_{1}, y_{1}\right)=(1,1)$ and $\left(x_{2}, y_{2}\right)=(3,2)$. If we plug these into the formula, we get

$$
d=\sqrt{(3-1)^{2}+(2-1)^{2}}=\sqrt{(2)^{2}+(1)^{2}}=\sqrt{4+1}=\sqrt{5} .
$$

Example L2.3: Find the distance between points $(-1,0)$ and $(5,4)$. Solution: Take $\left(x_{1}, y_{1}\right)=(-1,0)$ and $\left(x_{2}, y_{2}\right)=(5,4)$. If we plug these into the formula, we get

$$
d=\sqrt{(5-(-1))^{2}+(4-0)^{2}}=\sqrt{(5+1)^{2}+(4)^{2}}=\sqrt{36+16}=\sqrt{52}
$$

1. The coordinate plane
2. Distance between points
3. Circles: standard equation and graph
4. Completing the square

A circle is a set of points that are all the same distance from the center $\left(x_{0}, y_{0}\right)$.

- Let r mean the radius of the circle.
- Let (x, y) mean the coordinates of a point on the circle.
- Then the coordinates must satisfy the equation

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

- This equation is in the standard form for a circle.

Example L2.4: Find the equation for a circle with radius 3 and center $(-1,1)$.
Solution: We have $x_{0}=-1$ and $y_{0}=1$ with $r=3$. Plug these values into the standard-form equation for a circle:

$$
(x-(-1))^{2}+(y-1)^{2}=3^{2} \Rightarrow(x+1)^{2}+(y-1)^{2}=9
$$

Here are two more examples of circles.

$$
\begin{aligned}
(x-1)^{2}+(y-1)^{2} & =1 \text { red } \\
x^{2}+(y-1)^{2} & =\frac{1}{4} \text { blue }
\end{aligned}
$$

Given the equation for a circle in standard form, you should be able to find the center and radius.

Example L2.5: Find the center and radius of the circle with equation

$$
(x+2)^{2}+(y-4)^{2}=16
$$

Solution: In order for the first term to be of the form $\left(x-x_{0}\right)^{2}$, we would need $x_{0}=-2$. Similarly, $y_{0}=4$ and the center of the circle is thus $(-2,4)$. The right-hand side of the equation gives $r^{2}=16$ so that $r=4$ is the radius.

1. The coordinate plane
2. Distance between points
3. Circles: standard equation and graph
4. Completing the square

Sometimes equations for circles are NOT in standard form; we can complete the square to put the equation into standard form.

Here is an equation for a circle in disguise:

$$
x^{2}+a x+y^{2}+b y=c
$$

- Here a, b and c are just place-holders for three numbers.
- There is a restriction on the values c can have for this to be a circle, which we will soon see.
- We can put this equation into the standard form for a circle by following a series of steps called "completing the square".
- You must memorize this process and be able to perform it on demand. It is used all the time in practice.

How to complete the square.

1. Add the quantities $(a / 2)^{2}$ and $(b / 2)^{2}$ into the equation on BOTH SIDES:

$$
x^{2}+a x+\left(\frac{a}{2}\right)^{2}+y^{2}+b y+\left(\frac{b}{2}\right)^{2}=c+\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2} .
$$

2. The right-hand side is now r^{2}, so

$$
r=\sqrt{c+\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}} .
$$

3. Imagine "grouping" the remaining terms as follows:

$$
\left[x^{2}+a x+\left(\frac{a}{2}\right)^{2}\right]+\left[y^{2}+b y+\left(\frac{b}{2}\right)^{2}\right]=r^{2}
$$

This may be rewritten as

$$
\left(x+\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=r^{2}
$$

4. Therefore, $x_{0}=-a / 2$ and $y_{0}=-b / 2$ gives the center.

For some people it may be easier to just memorize the formulas for the center and radius.

Short procedure:

1. Set $x_{0}=-a / 2$ and $y_{0}=-b / 2$.
2. Set according to the formula

$$
r=\sqrt{c+\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2}} .
$$

3. Plug these into the standard form:

$$
\begin{aligned}
(x-(-a / 2))^{2}+(y-(-b / 2))^{2} & =(x+(a / 2))^{2}+(y+(b / 2))^{2} \\
& =c+\left(\frac{a}{2}\right)^{2}+\left(\frac{b}{2}\right)^{2} .
\end{aligned}
$$

This has been rather abstract; let's look at an example to watch how it works.

Example L2.6: Complete the square to get the standard form of the circle

$$
x^{2}+6 x+y^{2}+16 y=1
$$

Solution: Here we have $a=6$ and $b=16$. We cut these in half, square the results and add to both sides:

$$
x^{2}+6 x+3^{2}+y^{2}+16 y+8^{2}=1+3^{2}+8^{2}
$$

We have $r^{2}=1+9+64=74$, hence $r=\sqrt{74}$. Recall the left-hand side may be rewritten now:

$$
(x+3)^{2}+(y+8)^{2}=74
$$

Note that $x_{0}=-3=-a / 2$ and $y_{0}=-8=-b / 2$.

Another example to watch how it works.

Example L2.7: Complete the square to get the standard form of the circle

$$
x^{2}-4 x+y^{2}+2 y=-3
$$

Solution: Here we have $a=-4$ and $b=2$. We cut these in half, square the results and add to both sides:

$$
x^{2}-4 x+(-2)^{2}+y^{2}+2 y+1^{2}=-3+(-2)^{2}+1^{2}
$$

We have $r^{2}=-3+4+1=2$, hence $r=\sqrt{2}$. Recall the left-hand side may be rewritten now:

$$
(x-2)^{2}+(y+1)^{2}=2
$$

Note that $x_{0}=2=-a / 2$ and $y_{0}=-1=-b / 2$.

Practice!

Problem L2.1: Sketch the region $\{(x, y) \mid-2<y \leq 1\}$.
Problem L2.2: Calculate the distance between the points $(0,-6)$ and $(2,3)$.

Problem L2.3: Find an equation for the circle with radius 5 and center ($-9,2$).

Problem L2.4: Find the center and radius of the circle satisfying

$$
(x+1)^{2}+(y-1)^{2}=3
$$

Problem L2.5: Complete the square to put the equation for the circle in standard form:

$$
x^{2}+10 x+y^{2}-4 y=-28
$$

