Math 1060Q Lecture 18

Jeffrey Connors
University of Connecticut

November 10, 2014

Inverse functions: how to "undo" the action of a function

- What is an inverse function?
- One-to-one functions and the horizontal line test.
- Graphing the inverse.
- Deriving formulas for the inverse.

The inverse function reverses the action of the original function.

If $y=f(x)$, where f is a function (remember vertical line test?) then we denote the inverse of $f(x)$ by

$$
f^{-1}(y)=x
$$

- If \mathcal{D} is the domain of f and \mathcal{R} is the range of f, then f^{-1} has domain \mathcal{R} and range \mathcal{D}.
- Note that $f^{-1}(y)=f^{-1}(f(x))=x$; i.e. f^{-1} in some sense reverses the action of $f(x)$, bringing us back to x.
- One of the main uses is to solve something like $f(x)=0$, in which case the answer may be $x=f^{-1}(0)$. It can therefore be useful to come up with formulas for inverse functions, so that they may be evaluated.

Example of an inverse function.

Let $f(x)=2 x+5$ on the domain $[-1,1]$. This is simply a "line"; note $f(-1)=3$ and $f(1)=7$, therefore the range is $[3,7]$.

CLAIM: The inverse of this function exists and is given by

$$
f^{-1}(x)=\frac{x-5}{2}
$$

with domain $[3,7]$ and range $[-1,1]$.
CHECK: Let x be any number in $[-1,1]$. We find that

$$
f^{-1}(f(x))=f^{-1}(2 x+5)=\frac{(2 x+5)-5}{2}=x
$$

Thus, if $y=f(x)$ is in the set $[3,7]$, then $f^{-1}(y)=x$.

- What is an inverse function?
- One-to-one functions and the horizontal line test.
- Graphing the inverse.
- Deriving formulas for the inverse.

The inverse does not generally exist; we will consider only

 when the function is "1-to-1"A function $f(x)$ with domain \mathcal{D} is called 1-to-1 if it satisfies the following logical statement: Given any two numbers x_{1} and x_{2} in the domain \mathcal{D},

$$
x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

- If $f(x)$ is 1 -to- 1 , then $f^{-1}(x)$ exists.
- Note that this property may depend on the specified domain; e.g. think of $f(x)=x^{2}$ on $[-1,1]$ versus on $[0,1]$.
- If $f(x)$ is a function that is 1-to-1, then $f^{-1}(x)$ is also a 1-to-1 function.
- Unfortunately, existence of the inverse does not mean we can come up with a nice formula for the inverse; that is a different problem.

You can tell from the graph of $f(x)$ if it is 1-to-1 quite easily.

Horizontal line test: If an arbitrary horizontal line only intersects the graph of $f(x)$ once over it's domain, then it is 1-to-1.

However, we can also restrict the domain of a function and it may then be 1-to-1

Example: you need to identify the domain before you talk about the inverse.

Example L18.1: Does the function $f(x)=\sqrt{x+1}$ have an inverse?
Solution: Note that the domain is where $x+1 \geq 0$, so $[-1, \infty)$. Look at the graph and apply the horizontal line test OVER THE DOMAIN ONLY:

We see that the inverse exists.

- What is an inverse function?
- One-to-one functions and the horizontal line test.
- Graphing the inverse.
- Deriving formulas for the inverse.

To graph an inverse, flip across the line $y=x$.
Example L18.2: Graph the inverse of $y=\sqrt{x+1}$.
Solution: We "mirror" the graph across the line $y=x$; note that the domain and range get flipped.

Another example...

Example L18.3: Let $f(x)=9-x^{2}$ on the domain [2, 4]. Graph the inverse.

Solution: Note that the range is $[-7,5]$, and the domain and range flip for the inverse;

- What is an inverse function?
- One-to-one functions and the horizontal line test.
- Graphing the inverse.
- Deriving formulas for the inverse.

There is a procedure to find a formula for the inverse, which sometimes works!

1. Given $f(x)$, set $y=f(x)$.
2. Switch x and y; write $x=f(y)$.
3. Solve for y in terms of x; this yields $y=f^{-1}(x)$.

Example L18.4: Find $f^{-1}(x)$ if $f(x)=-2 x+1$.
Solution: Set $x=f(y)=1-2 y$. Solve for y :

$$
2 y=1-x \Rightarrow y=\frac{1-x}{2}
$$

It follows that $f^{-1}(x)=(1-x) / 2$.

More examples...

Example 18.5: Find the inverse of $f(x)=(1-x) /(2 x+1)$.
Solution: Set $x=f(y)$ and solve for $y \ldots$ this will take some work.

$$
x=\frac{1-y}{2 y+1} \Rightarrow x(2 y+1)=1-y
$$

Next, group the terms with a y on one side, throw other terms on the other side...

$$
x(2 y+1)=2 x y+x=1-y \Rightarrow 2 x y+y=1-x
$$

Now factor the y out on the left and move x-terms to the right:

$$
y(2 x+1)=1-x \Rightarrow y=f^{-1}(x)=\frac{1-x}{2 x+1} .
$$

It turns out that $f^{-1}(x)=f(x)$. This happens sometimes, in which case we call $f(x)$ an involution.

More examples...

Example L18.6: Find $f^{-1}(x)$ if $f(x)=(x+1) /(7 x-5)$.
Solution: Set $x=f(y)$ and solve for $y \ldots$

$$
\begin{aligned}
x=\frac{y+1}{7 y-5} \Rightarrow x(7 y-5)=y+1 \Rightarrow 7 x y-5 x & =y+1 \\
\quad \Rightarrow 7 x y-y=1+5 x \Rightarrow y(7 x-1)= & 1+5 x \\
& \Rightarrow y=\frac{1+5 x}{7 x-1} .
\end{aligned}
$$

In summary, $f^{-1}(x)=(1+5 x) /(7 x-1)$.

Practice!

Problem L18.1: Determine if the functions shown are invertible.

Practice!

Problem L18.2: Let $f(x)=x^{3}$. Sketch a graph of $f^{-1}(x)$.
Problem L18.3: Find the inverses of the following functions:

$$
\begin{aligned}
& \text { (a) } f(x)=3 x-4 \\
& \text { (b) } f(x)=\frac{2}{x+3} \\
& \text { (c) } f(x)=\frac{x-2}{2 x+1}
\end{aligned}
$$

