Math 1060Q Lecture 15

Jeffrey Connors

University of Connecticut

October 22, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some other trig. functions: $tan(\theta)$, $sec(\theta)$, $csc(\theta)$, $cot(\theta)$

- Definitions in terms of $sin(\theta)$, $cos(\theta)$.
- Calculation of values at our special angles.
- Graphs of these functions.

The tangent function is denoted by $tan(\theta)$.

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}.$$

In terms of triangles, think "opposite over adjacent";

•
$$tan(\theta) = y/x$$
.

Note that tan(θ) is not defined when cos(θ) = 0, which means for θ = (2k − 1)π/2 (k is any integer).

The "co-functions" are reciprocals.

The secant function is

$$\sec(\theta) = \frac{1}{\cos(\theta)}.$$

The cosecant function is

$$\csc(\theta) = \frac{1}{\sin(\theta)}.$$

The cotangent function is

$$\cot(\theta) = \frac{1}{\tan(\theta)} = \frac{\cos(\theta)}{\sin(\theta)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

If you can calculate $sin(\theta)$ and $cos(\theta)$, then $tan(\theta)$ and the co-functions are easy to find from the formulas.

- Definitions in terms of $sin(\theta)$, $cos(\theta)$.
- Calculation of values at our special angles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Graphs of these functions.

The last four rows in the table may found from the first two rows.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$
$sin(\theta)$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos(\theta)$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
tan(heta)	0	$1/\sqrt{3}$	1	$\sqrt{3}$	
$\csc(\theta)$		2	$\sqrt{2}$	$2/\sqrt{3}$	1
$sec(\theta)$	1	$2/\sqrt{3}$	$\sqrt{2}$	2	
$\cot(\theta)$	—	$\sqrt{3}$	1	$1/\sqrt{3}$	0

- Definitions in terms of $sin(\theta)$, $cos(\theta)$.
- Calculation of values at our special angles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Graphs of these functions.

The graph of $tan(\theta)$. Note the domain and shape.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The graph of $sec(\theta)$. This is not hard if you understand our previous discussion of graphing a reciprocal.

●▶ ▲ ■▶ ■ ● ● ●

Since $sin(\theta)$ is just $cos(\theta)$ shifted by $\pi/2$ units, $csc(\theta)$ and $sec(\theta)$ have the same relationship.

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Similarly, the graph of $\cot(\theta)$ may be derived from the graph of $\tan(\theta)$, but you don't want to display these together (messy).

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● ののの

Practice!

Problem L15.1: Fill in the table:

θ	$2\pi/3$	$5\pi/4$	$-\pi/2$	$-\pi/6$
$tan(\theta)$				
$\csc(\theta)$				
$sec(\theta)$				
$\cot(\theta)$				

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Practice!

Problem L15.1: Fill in the table:

θ	$2\pi/3$	$5\pi/4$	$-\pi/2$	$-\pi/6$
$tan(\theta)$	$-\sqrt{3}$	1		$-1/\sqrt{3}$
$\csc(\theta)$	$2/\sqrt{3}$	$-\sqrt{2}$	-1	-2
$sec(\theta)$	-2	$-\sqrt{2}$		$2/\sqrt{3}$
$\cot(\theta)$	$-1/\sqrt{3}$	1	0	$-\sqrt{3}$