Math 1060Q Lecture 15

Jeffrey Connors
University of Connecticut

October 22, 2014

Some other trig. functions: $\tan (\theta), \sec (\theta), \csc (\theta), \cot (\theta)$

- Definitions in terms of $\sin (\theta), \cos (\theta)$.
- Calculation of values at our special angles.
- Graphs of these functions.

The tangent function is denoted by $\tan (\theta)$.

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}
$$

In terms of triangles, think "opposite over adjacent";

- $\tan (\theta)=y / x$.
- Note that $\tan (\theta)$ is not defined when $\cos (\theta)=0$, which means for $\theta=(2 k-1) \pi / 2$ (k is any integer).

The "co-functions" are reciprocals.

- The secant function is

$$
\sec (\theta)=\frac{1}{\cos (\theta)}
$$

- The cosecant function is

$$
\csc (\theta)=\frac{1}{\sin (\theta)}
$$

- The cotangent function is

$$
\cot (\theta)=\frac{1}{\tan (\theta)}=\frac{\cos (\theta)}{\sin (\theta)}
$$

If you can calculate $\sin (\theta)$ and $\cos (\theta)$, then $\tan (\theta)$ and the co-functions are easy to find from the formulas.

- Definitions in terms of $\sin (\theta), \cos (\theta)$.
- Calculation of values at our special angles.
- Graphs of these functions.

The last four rows in the table may found from the first two rows.

θ	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$
$\sin (\theta)$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1
$\cos (\theta)$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0
$\tan (\theta)$	0	$1 / \sqrt{3}$	1	$\sqrt{3}$	-
$\csc (\theta)$	-	2	$\sqrt{2}$	$2 / \sqrt{3}$	1
$\sec (\theta)$	1	$2 / \sqrt{3}$	$\sqrt{2}$	2	-
$\cot (\theta)$	-	$\sqrt{3}$	1	$1 / \sqrt{3}$	0

- Definitions in terms of $\sin (\theta), \cos (\theta)$.
- Calculation of values at our special angles.
- Graphs of these functions.

The graph of $\tan (\theta)$. Note the domain and shape.

The graph of $\sec (\theta)$. This is not hard if you understand our previous discussion of graphing a reciprocal.

Since $\sin (\theta)$ is just $\cos (\theta)$ shifted by $\pi / 2$ units, $\csc (\theta)$ and $\sec (\theta)$ have the same relationship.

Similarly, the graph of $\cot (\theta)$ may be derived from the graph of $\tan (\theta)$, but you don't want to display these together (messy).

Practice!

Problem L15.1: Fill in the table:

θ	$2 \pi / 3$	$5 \pi / 4$	$-\pi / 2$	$-\pi / 6$
$\tan (\theta)$				
$\csc (\theta)$				
$\sec (\theta)$				
$\cot (\theta)$				

Practice!

Problem L15.1: Fill in the table:

θ	$2 \pi / 3$	$5 \pi / 4$	$-\pi / 2$	$-\pi / 6$
$\tan (\theta)$	$-\sqrt{3}$	1	-	$-1 / \sqrt{3}$
$\csc (\theta)$	$2 / \sqrt{3}$	$-\sqrt{2}$	-1	-2
$\sec (\theta)$	-2	$-\sqrt{2}$	-	$2 / \sqrt{3}$
$\cot (\theta)$	$-1 / \sqrt{3}$	1	0	$-\sqrt{3}$

