Math 1060Q Lecture 14

Jeffrey Connors
University of Connecticut

October 20, 2014

Today's goal is to become more familiar with sinusoidal graphs

- Graphs of $\sin (x)$ and $\cos (x)$.
- Controlling amplitude, period and shift.

You will want to know the graphs of $\sin (x)$ and $\cos (x)$.

- Amplitude (height) is 1 .
- Period is $\tau=2 \pi$.
- Notice $\sin (x+\pi / 2)=\cos (x)$.
- Graphs of $\sin (x)$ and $\cos (x)$.
- Controlling amplitude, period and shift.

We want to understand $A \cos (B x+C)$ and $A \sin (B x+C)$.

1. We look at $y=A \sin (x), y=A \cos (x)$.
2. We look at $y=\sin (B x), y=\cos (B x)$.
3. We look at $y=\sin (x+C), y=\cos (x+C)$.
4. We combine these results.

Controlling the amplitude $|A|$.

Recall that when we multiply a function by a constant, the y-values of the graph grow or shrink proportionally:

Negative A values also flip the graph across the horizontal axis.

Since $y=\sin (B x)$ is multiplying the argument by B, this will change the period from $\tau=2 \pi$ to $\tau=2 \pi / B$.

Adding C to the argument shifts left or right.

Consider combining the results as follows...

Given $y=A \sin (B x+C)$, we first factor out B inside the parentheses:

$$
y=A \sin (B x+C)=A \sin (B(x+C / B))
$$

Thus we note that the graph may be obtained in three steps:

1. Start with the graph of $y=\sin (x)$.
2. Change the amplitude; $y=A \sin (x)$.
3. Change the period to $\tau=2 \pi / B ; y=A \sin (B x)$.
4. Shift left/right depending on $C / B ; y=A \sin (B(x+C / B))$.

Example L14.1: Graph $y=2 \sin (4 x-8)$.

Solution: We write this as $y=2 \sin (4(x-2))$. Let us see what happens step-by-step; first look at $y=2 \sin (x)$:

Example L14.1: Graph $y=2 \sin (4 x-8)$.

Solution: Next, look at $y=2 \sin (4 x)$:

Example L14.1: Graph $y=2 \sin (4 x-8)$.

Solution: Finally, $y=2 \sin (4(x-2))$ is shifted right 2 units:

Example L14.2: Graph $y=-3 \cos (x / 2+1)$.

Solution: We write $y=-3 \cos ((x+2) / 2)$. Then we

1. Start with $\cos (x)$ and
2. flip across the horizontal axis,
3. rescale the y-axis by a factor of 3 ,
4. rescale the x-axis since the period is now $\tau=2 \pi /(1 / 2)=4 \pi$
5. and then shift left 2 units.

Here is the result.

Practice!

Problem L14.1: Plot $y=\frac{1}{4} \sin (2 x+\pi / 3)$.
Problem L14.2: Plot $y=3 \cos (x / 2-\pi / 4)$.

