Math 1060Q Lecture 13

Jeffrey Connors
University of Connecticut

October 15, 2014

Sinusoidal functions

- Relationship of unit circle with $\sin (\theta)$ and $\cos (\theta)$
- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

We can think of $\sin (\theta)$ and $\cos (\theta)$ as functions on the unit circle

$$
\sin (\theta)=\frac{y(\theta)}{1}=y(\theta), \quad \cos (\theta)=\frac{x(\theta)}{1}=x(\theta) .
$$

Examples in Quadrant I: x and y are both positive.
We can find $\sin (\theta)$ or $\cos (\theta)$ for certain θ values using special triangles.

Examples in Quadrant II: x becomes negative.

So $x(\theta)=\cos (\theta)$ becomes negative...

Examples in Quadrant III: x, y both are negative.

So now both $\sin (\theta)$ and $\cos (\theta)$ are negative.

Examples in Quadrant IV: only y is negative.

Then $\sin (\theta)<0$ and $\cos (\theta)>0$.

$$
\cos \left(315^{\circ}\right)=\frac{1}{\sqrt{2}}, \sin \left(315^{\circ}\right)=\frac{-1}{\sqrt{2}}, \cos \left(330^{\circ}\right)=\frac{\sqrt{3}}{2}, \sin \left(330^{\circ}\right)=\frac{-1}{2} .
$$

It is easy to find $\sin (\theta), \cos (\theta)$ when θ is a multiple of 90°.
For $\theta=90^{\circ}, 180^{\circ}, 270^{\circ}, 360^{\circ}$ we are on a coordinate axis.

θ	0°	90°	180°	270°	360°
$\cos (\theta)$	1	0	-1	0	1
$\sin (\theta)$	0	1	0	-1	0

Calculation problems.

Example L13.1: Find $\sin (5 \pi / 4)$.
Solution: We note that the angle $\theta=5 \pi / 4$ is in Quadrant III and will have the same size y coordinate as for $\theta=\pi / 4$ in Quadrant I, except with opposite sign.

$$
\sin (\pi / 4)=\frac{1}{\sqrt{2}} \Rightarrow \sin (5 \pi / 4)=-\frac{1}{\sqrt{2}}
$$

Example L13.2: Find $\cos (11 \pi / 6)$.
Solution: For this angle, which is in Quadrant IV, the corresponding point on the unit circle has x coordinate the same as for the angle $\theta=\pi / 6$. Therefore,

$$
\cos (11 \pi / 6)=\cos (\pi / 6)=\frac{\sqrt{3}}{2}
$$

- Relationship of unit circle with $\sin (\theta)$ and $\cos (\theta)$
- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

Recall the Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$.

c is the length of the hypoteneuse of a right triangle and a, b are the lengths of the other sides.

- $x=\cos (\theta), y=\sin (\theta)$ on the unit circle.
- We envision a right triangle with hypoteneuse 1 and sides of length x and y.
- It follows from the Pythagorean Theorem that

$$
x^{2}+y^{2}=1^{2}=1 \Rightarrow \cos ^{2}(\theta)+\sin ^{2}(\theta)=1
$$

- Note that this holds for any angle θ.
- This trigonometric identity is called the Pythagorean Identity.
- It is useful to "reduce" expressions, because we often encounter $\cos ^{2}(\theta)+\sin ^{2}(\theta)$ in practice.
- Relationship of unit circle with $\sin (\theta)$ and $\cos (\theta)$
- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

If we plot $\cos (\theta)$ and $\sin (\theta)$ versus θ, we get the following.

- Domain is $(-\infty, \infty)$.
- Range is $[-1,1]$.
- $\cos (\theta)$ is EVEN.
- $\sin (\theta)$ is ODD.
- Relationship of unit circle with $\sin (\theta)$ and $\cos (\theta)$
- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

Sinusoids are periodic, meaning the graph repeats itself as θ increases.

- A function $f(\theta)$ is periodic if there is a number τ such that $f(\theta+\tau)=f(\theta)$ holds for all θ.
- τ is called the period of the function.
- For $\sin (\theta)$ and $\cos (\theta), \tau=2 \pi$.

To check if something is periodic, check if it satisfies the definition for some period τ.

Example L13.3: Show that $f(z)=\sin (\pi z)$ is periodic and find the period τ.

Solution: Since we have multiplied the argument for the periodic function $\sin (\theta)$ by π, the new period is found by dividing the period of $\sin (\theta)$ by $\pi: \tau=2 \pi / \pi=2$. To check, plug $z+\tau$ into $f(z)$:
$f(z+\tau)=\sin (\pi(z+\tau))=\sin (\pi z+\pi \tau)=\sin (\pi z+2 \pi)=\sin (\pi z)=f(z)$.
We have shown that $f(z+\tau)=f(z)$ where $\tau=2$, so we are done.

Practice!

Problem L13.1: Fill in the following table:

θ	π	$\pi / 4$	$7 \pi / 6$	$3 \pi / 2$	2π
$\cos (\theta)$ $\sin (\theta)$					

Problem L13.2: Find all values $0 \leq \theta \leq 2 \pi$ such that $\cos (\theta)=\sqrt{3} / 2$.

Problem L13.3: Show that the function $f(\theta)=\sin (\theta)+\cos (\theta)$ is periodic. What is the period of f ?

