Math 1060Q Lecture 13

Jeffrey Connors

University of Connecticut

October 15, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sinusoidal functions

• Relationship of unit circle with $sin(\theta)$ and $cos(\theta)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

We can think of $sin(\theta)$ and $cos(\theta)$ as functions on the unit circle

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Examples in Quadrant I: x and y are both positive.

We can find $sin(\theta)$ or $cos(\theta)$ for certain θ values using special triangles.

Examples in Quadrant II: x becomes negative.

So $x(\theta) = \cos(\theta)$ becomes negative...

Examples in Quadrant III: x, y both are negative.

So now both $sin(\theta)$ and $cos(\theta)$ are negative.

Examples in Quadrant IV: only y is negative.

Then $sin(\theta) < 0$ and $cos(\theta) > 0$.

- ◆ □ ▶ → 個 ▶ → 目 ▶ → 目 → のへで

It is easy to find $sin(\theta)$, $cos(\theta)$ when θ is a multiple of 90°. For $\theta = 90^{\circ}$, 180° , 270° , 360° we are on a coordinate axis.

θ	0°	90°	180°	270°	360°
$\cos(\theta)$	1	0	-1	0	1
sin(heta)	0	1	0	-1	0

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● 臣 = • • ○ � ○

Calculation problems.

Example L13.1: Find $sin(5\pi/4)$.

Solution: We note that the angle $\theta = 5\pi/4$ is in Quadrant III and will have the same size y coordinate as for $\theta = \pi/4$ in Quadrant I, except with opposite *sign*.

$$\sin(\pi/4) = \frac{1}{\sqrt{2}} \Rightarrow \sin(5\pi/4) = -\frac{1}{\sqrt{2}}$$

Example L13.2: Find $cos(11\pi/6)$. Solution: For this angle, which is in Quadrant IV, the corresponding point on the unit circle has x coordinate the same as for the angle $\theta = \pi/6$. Therefore,

$$\cos(11\pi/6) = \cos(\pi/6) = \frac{\sqrt{3}}{2}.$$

• Relationship of unit circle with $sin(\theta)$ and $cos(\theta)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

Recall the Pythagorean Theorem: $a^2 + b^2 = c^2$.

c is the length of the hypoteneuse of a right triangle and a, b are the lengths of the other sides.

- $x = \cos(\theta)$, $y = \sin(\theta)$ on the unit circle.
- We envision a right triangle with hypoteneuse 1 and sides of length x and y.
- It follows from the Pythagorean Theorem that

$$x^2 + y^2 = 1^2 = 1 \Rightarrow \cos^2(\theta) + \sin^2(\theta) = 1.$$

- Note that this holds for any angle θ .
- This trigonometric identity is called the Pythagorean Identity.
- It is useful to "reduce" expressions, because we often encounter cos²(θ) + sin²(θ) in practice.

• Relationship of unit circle with $sin(\theta)$ and $cos(\theta)$

(ロ)、(型)、(E)、(E)、 E) の(の)

- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

If we plot $cos(\theta)$ and $sin(\theta)$ versus θ , we get the following.

- Domain is $(-\infty, \infty)$.
- ▶ Range is [-1,1].
- cos(θ) is EVEN.
- sin(θ) is ODD.

• Relationship of unit circle with $sin(\theta)$ and $cos(\theta)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The Pythagorean Identity
- Sinusoidal graphs
- Sinusoids are "periodic" functions

Sinusoids are periodic, meaning the graph repeats itself as θ increases.

- A function $f(\theta)$ is periodic if there is a number τ such that $f(\theta + \tau) = f(\theta)$ holds for all θ .
- τ is called the period of the function.
- For $sin(\theta)$ and $cos(\theta)$, $\tau = 2\pi$.

To check if something is periodic, check if it satisfies the definition for some period τ .

Example L13.3: Show that $f(z) = \sin(\pi z)$ is periodic and find the period τ .

Solution: Since we have multiplied the argument for the periodic function $\sin(\theta)$ by π , the new period is found by dividing the period of $\sin(\theta)$ by π : $\tau = 2\pi/\pi = 2$. To check, plug $z + \tau$ into f(z):

$$f(z+\tau) = \sin(\pi(z+\tau)) = \sin(\pi z + \pi \tau) = \sin(\pi z + 2\pi) = \sin(\pi z) = f(z)$$

We have shown that $f(z + \tau) = f(z)$ where $\tau = 2$, so we are done.

Practice!

Problem L13.1: Fill in the following table:

θ	π	$\pi/4$	$7\pi/6$	$3\pi/2$	2π
$\cos(\theta)$					
sin(heta)					

Problem L13.2: Find all values $0 \le \theta \le 2\pi$ such that $\cos(\theta) = \sqrt{3}/2$.

Problem L13.3: Show that the function $f(\theta) = \sin(\theta) + \cos(\theta)$ is periodic. What is the period of f?