Math 1060Q Lecture 12

Jeffrey Connors
University of Connecticut

October 13, 2014

Today we get into trigonometry.

- Angle measures: degrees and radians
- Arc length and circular sectors
- Right triangles and trigonometric functions

The two main "units" for angle measures are degrees and radians.

- We divide a circle into 360 degrees.
- We divide a circle into 2π radians.

The radian measurement is the fraction of the perimeter of the unit circle.

- A circle of radius 1 has circumference 2π.
- The angle in radians is the lenth of the perimeter traced out along the unit circle, e.g. if we go $1 / 4$ of the way around we trace out an angle of $2 \pi / 4=\pi / 2$ radians.

Negative angles may be measured clock-wise.

Conversion of degrees to radians or radians to degrees.

- Note that $360^{\circ}=2 \pi$ rad, so we have

$$
\frac{360^{\circ}}{2 \pi \mathrm{rad}}=1=\frac{2 \pi \mathrm{rad}}{360^{\circ}}
$$

- If preferred, you can reduce as follows:

$$
\frac{180^{\circ}}{\pi \mathrm{rad}}=1=\frac{\pi \mathrm{rad}}{180^{\circ}}
$$

- To convert one way or the other, think of "cancelling units";

$$
\begin{gathered}
90^{\circ}=90^{\circ} \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{\pi}{2} \mathrm{rad} \\
\frac{\pi}{6} \mathrm{rad}=\frac{\pi}{6} \mathrm{rad} \frac{180^{\circ}}{\pi \mathrm{rad}}=30^{\circ}
\end{gathered}
$$

- Angle measures: degrees and radians
- Arc length and circular sectors
- Right triangles and trigonometric functions

Arc length: a fraction of the circumference of a circle.

We already know that radian measure denotes arc length along a unit circle. If the radius of the circle is NOT $r=1$, there is still a simple way to get the arc lenth, $s: s=r \theta$. But θ is in RADIANS here.

Area of a circular sector works in a similar way.

- Area of a circle: πr^{2}.
- Let F be some fraction of a circle swept out by some angle θ; the area of the corresponding circular sector is $F \pi r^{2}$.
- F can be found as follows:

$$
\text { radians: } \quad F=\frac{\theta}{2 \pi}, \text { degrees : } F=\frac{\theta}{360} .
$$

- In summary, the area of a circular sector is

$$
\text { radians: } \frac{\theta}{2 \pi} \pi r^{2}=\frac{\theta}{2} r^{2}, \text { degrees : } \frac{\theta}{360} \pi r^{2} .
$$

- It is probably easier to remember the derivation of these formulas than the formulas themselves.

Example

Example L12.1: What are the arc length and area of the circular sector swept out by an angle of $\theta=135^{\circ}$ with radius $r=10$? Solution: We want radians for the arc length, so first convert:

$$
135^{\circ}=135^{\circ} \frac{\pi \mathrm{rad}}{180^{\circ}}=\frac{3 \pi}{4} \mathrm{rad}
$$

(Make a picture to help if your algebra is not strong enough.) Then apply the formulas:

$$
\begin{gathered}
s=r \theta=10 \frac{3 \pi}{4}=\frac{15 \pi}{2} . \\
\text { Area }=F \pi r^{2}=\frac{3 \pi / 4}{2 \pi} \pi 10^{2}=100 \frac{3 \pi}{8}=\frac{75 \pi}{2} .
\end{gathered}
$$

- Angle measures: degrees and radians
- Arc length and circular sectors
- Right triangles and trigonometric functions

The primary trig. functions.

- $\sin (\theta)=\frac{b}{c}$ "opposite over hypoteneuse"
- $\cos (\theta)=\frac{a}{c}$ "adjacent over hypoteneuse"
- $\tan (\theta)=\frac{b}{a}$ "opposite over adjacent"

The trig. co-functions.

- $\csc (\theta)=\frac{c}{b}=\frac{1}{\sin (\theta)}$ "reciprocal of $\sin (\theta)$ "
$-\sec (\theta)=\frac{c}{a}=\frac{1}{\cos (\theta)}$ "reciprocal of $\cos (\theta) "$
$-\cot (\theta)=\frac{a}{b}=\frac{1}{\tan (\theta)}$ "reciprocal of $\tan (\theta)$ "

Special triangles: $30^{\circ}-60^{\circ}-90^{\circ}$

$$
\begin{array}{ll}
\sin \left(30^{\circ}\right)=\frac{1}{2} & \csc \left(30^{\circ}\right)=\frac{2}{1}=2 \\
\cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2} & \sec \left(30^{\circ}\right)=\frac{2}{\sqrt{3}} \\
\tan \left(30^{\circ}\right)=\frac{1}{\sqrt{3}} & \cot \left(30^{\circ}\right)=\sqrt{3}
\end{array}
$$

Special triangles: $30^{\circ}-60^{\circ}-90^{\circ}$

$$
\begin{array}{ll}
\sin \left(60^{\circ}\right)=\frac{\sqrt{3}}{2} & \csc \left(60^{\circ}\right)=\frac{2}{\sqrt{3}} \\
\cos \left(60^{\circ}\right)=\frac{1}{2} & \sec \left(60^{\circ}\right)=2 \\
\tan \left(60^{\circ}\right)=\sqrt{3} & \cot \left(60^{\circ}\right)=\frac{1}{\sqrt{3}}
\end{array}
$$

Special triangles: $45^{\circ}-45^{\circ}-90^{\circ}$

$$
\left.\begin{array}{rl}
\sin \left(45^{\circ}\right) & =\frac{1}{\sqrt{2}}
\end{array} \quad \csc \left(45^{\circ}\right)=\sqrt{2}\right)
$$

Examples

Example L12.2: If a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle has hypoteneuse 8 units long, find the lengths of the remaining sides.
Solution: Let x denote the length of the side opposite the 30° angle. Then

$$
\sin \left(30^{\circ}\right)=\frac{x}{8}=\frac{1}{2} \Rightarrow x=\frac{8}{2}=4
$$

Similarly, if y is the length of the remaining side,

$$
\cos \left(30^{\circ}\right)=\frac{y}{8}=\frac{\sqrt{3}}{2} \Rightarrow y=\frac{8 \sqrt{3}}{2}=4 \sqrt{3}
$$

Examples

Example L12.3: Someone looks up to the top of a building, which is 400 feet high, tilting their head 60° up to do so. How far away from the building are they?
Solution: We have the relationship

$$
\tan \left(60^{\circ}\right)=\frac{400}{x}=\sqrt{3} \Rightarrow x=\frac{400}{\sqrt{3}},
$$

measured in feet.

Practice!

Problem L12.1: Find $\sin (\theta), \cos (\theta), \tan (\theta), \sec (\theta), \csc (\theta)$ and $\cot (\theta)$:

Practice!

Problem L12.2: Calculate x :

Problem L12.3: Calculate x :

