Math 1060Q Lecture 11

Jeffrey Connors
University of Connecticut

October 8, 2014

Rational functions

- What is a rational function?
- Horizontal and vertical asymptotes
- Slant asymptotes
- Nonlinear asymptotes

A rational function includes a ratio of polynomials

Let $p(x)$ and $q(x)$ be polynomial functions. Then

$$
r(x)=\frac{p(x)}{q(x)}
$$

is a rational function. Note that the domain will be

$$
\mathcal{D}=\{x \mid q(x) \neq 0\} .
$$

For example,

$$
r(x)=\frac{x^{2}+1}{-3 x^{3}+5 x-2}
$$

is rational. The denominator has three roots; it turns out that

$$
\mathcal{D}=\left\{x \mid x \neq 1, \frac{-3-\sqrt{33}}{6}, \frac{-3+\sqrt{33}}{6}\right\} .
$$

Rational functions

- What is a rational function?
- Horizontal and vertical asymptotes
- Slant asymptotes
- Nonlinear asymptotes

A horizontal asymptote is a horizontal line that the graph converges to as $x \rightarrow \pm \infty$

Consider the graph of the previous rational function:

- 3 vertical asymptotes
- 1 horizontal asymptote (x-axis)

Two main examples of horizontal asymptotes.

1. The denominator of the rational function is higher-order than the numerator, e.g.

$$
r(x)=\frac{x-2}{x^{2}+3 x+1}
$$

Then the denominator grows faster than the numerator as $|x| \rightarrow \infty$, thus the ratio goes to zero. Hence we get the horizontal asymptote $y=0$.
2. The denominator of the rational function is the same order as the numerator, e.g.

$$
r(x)=\frac{x^{2}-2}{5 x^{2}+1} .
$$

Then the growth rate as $|x| \rightarrow \infty$ is determined by the ratio of the leading terms on top and bottom, thus this ratio gives the horizontal asymptote. For example, in the above case we have $y=\frac{1}{5}$ is the horizontal asymptote.

In some cases there are no vertical asymptotes.

Consider the graph of $\frac{x^{2}-2}{5 x^{2}+1}$.

You should be able to plot some of the simpler cases.

Example L11.1: Sketch the graph of

$$
r(x)=\frac{x-1}{x+1}
$$

Solution: Recall our guidelines for sketching... find x and y intercepts and identify asymptotes. You can also plot a few points to help.

- Set $x=0 ; r(0)=-1$.
- Set $r(x)=0$ and solve for $x \ldots x=1$.
- Vertical asymptote at $x=-1$.
- Horizontal asymptote $y=x / x=1$.
- Point to the left of the asymptote: $(-2,3)$.

The plot of the function.

- What is a rational function?
- Horizontal and vertical asymptotes
- Slant asymptotes
- Nonlinear asymptotes

A slant asymptote will occur when numerator is one order

 higher than the denominator.A slant asymptote is a line with slope $m \neq 0$ (not horizontal).
Consider

$$
r(x)=\frac{x^{2}+1}{x-3}
$$

We find the slant asymptote for this by using polynomial division first:

$$
\begin{array}{r}
x=3 \sqrt{x^{2}+0 x+1} \\
\frac{-\left(x^{2}-3 x\right)}{\frac{-(3 x-9)}{10}}
\end{array}
$$

Drop the remainder to find the slant asymptote.

We find that

$$
r(x)=\frac{x^{2}+1}{x-3}=x+3+\frac{10}{x-3}
$$

We drop the last term on the right and what remains (on the right) is the equation for the slant asymptote; $y=x+3$.

Another example...

Example L11.2: Find all asymptotes of

$$
r(x)=\frac{x^{2}-x-2}{2 x+4}
$$

and sketch the graph.
Solution: There is a vertical asymptote when

$$
2 x+4=0 \Rightarrow x=-2
$$

There is a slant asymptote since the numerator is of one order higher than the denominator; we divide to get

$$
r(x)=\frac{x^{2}-x-2}{2 x+4}=\frac{1}{2} x-\frac{3}{2}+\frac{4}{2 x+4} .
$$

Another example...

Thus $y=\frac{1}{2} x-\frac{3}{2}$ is the slant asymptote.

- What is a rational function?
- Horizontal and vertical asymptotes
- Slant asymptotes
- Nonlinear asymptotes

Consider the case that the numerator is at least two orders

 "higher" than the denominator.For example,

$$
r(x)=\frac{x^{4}+x^{3}-2 x^{2}+x+1}{x^{2}+6 x+1}
$$

For large x, the lead terms on the top and bottom determine the growth rate:

$$
x \rightarrow \pm \infty \Rightarrow r(x) \approx \frac{x^{4}}{x^{2}}=x^{2}
$$

Thus the function $r(x)$ behaves like $y=x^{2}$ as $x \rightarrow \pm \infty$. We would say that $r \rightarrow x^{2}$ asymptotically as $x \rightarrow \pm \infty$. We will not discuss such cases further; these could be called nonlinear asymptotes.

Summary to identify asymptotes

1. If the denominator is higher-order than the numerator, we get the horizontal asymptote $y=0$.
2. If the denominator is the same order as the numerator, we get a non-zero horizontal asymptote $y=a / b$, with a, b the lead coefficients on top and bottom, respectively.
3. If the denominator is ONE order lower than the numerator, we get a slant asymptote. One uses polynomial division to find this.
4. Any time the denominator is zero, we get a vertical asymptote.

Practice!

Problem L11.1: Find all asymptotes of the function

$$
r(x)=\frac{x+1}{x^{2}+3 x}
$$

Problem L11.2: Find all asymptotes of the function

$$
r(x)=\frac{x^{2}+1}{4 x^{2}+3}
$$

Problem L11.3: Find all asymptotes of the function

$$
r(x)=\frac{8 x^{2}+1}{4 x+3}
$$

Problem L11.4: Sketch the graph of the function

$$
r(x)=\frac{x^{2}+x+1}{x}
$$

