Math 1060Q: Final Exam Review

Jeffrey Connors
University of Connecticut

December 3, 2014

Studying for the final exam.

- The final exam will contain 9 problems.
- The five problems covered today will cover five of the problems on the final.
- To prepare for the remaining four problems, study the two midterm exams and practice exams, along with similar problems.

Problem 1

Let $f(x)=\frac{1-x}{x-5}$ on the domain $[-2,2]$, as shown in the graph.

(a) What are the domain and range of $f^{-1}(x)$?
(b) Find the formula for $f^{-1}(x)$ and sketch the curve.

Problem 1

The domain of f^{-1} will be the range of f, which we may find by calculating $f(-2)$ and $f(2)$:

$$
f(-2)=\frac{1+2}{-2-5}=-\frac{3}{7}, \quad f(2)=\frac{1-2}{2-5}=\frac{1}{3} .
$$

The domain of f^{-1} is $[-3 / 7,1 / 3]$ and the range is $[-2,2]$.
To find $f^{-1}(x)$:

$$
\begin{aligned}
x=f(y)= & \frac{1-y}{y-5} \Rightarrow x(y-5)=x y-5 x=1-y \\
& \Rightarrow x y+y=1+5 x \Rightarrow y(x+1)=1+5 x \\
& \Rightarrow y=f^{-1}(x)=\frac{1+5 x}{x+1} .
\end{aligned}
$$

Problem 1

Graph of $f^{-1}(x)$:

Problem 2

Find the exact value for each expression and fill in the table

$\sin (\arcsin (1 / \sqrt{2}))=$	
$\cos (\arccos (1 / \sqrt{3}))=$	
$\arcsin (\sin (5 \pi / 4))=$	
$\arctan (\tan (\pi))=$	
$\arccos (\cos (\pi / 6))=$	

Problem 2

The first two entries are simple, because

$$
\sin (\arcsin (x))=x \text { and } \cos (\arccos (x))=x
$$

are always true;

$\sin (\arcsin (1 / \sqrt{2}))=$	$1 / \sqrt{2}$
$\cos (\arccos (1 / \sqrt{3}))=$	$1 / \sqrt{3}$
$\arcsin (\sin (5 \pi / 4))=$	
$\arctan (\tan (\pi))=$	
$\arccos (\cos (\pi / 6))=$	

Problem 2

When solving $\arcsin (\sin (5 \pi / 4))=y$, we seek $\sin (5 \pi / 4)=\sin (y)$ with $-\pi / 2 \leq y \leq \pi / 2$. The answer is thus $y=-\pi / 4$.
Analogously, we find

$\sin (\arcsin (1 / \sqrt{2}))=$	$1 / \sqrt{2}$
$\cos (\arccos (1 / \sqrt{3}))=$	$1 / \sqrt{3}$
$\arcsin (\sin (5 \pi / 4))=$	$-\pi / 4$
$\arctan (\tan (\pi))=$	0
$\arccos (\cos (\pi / 6))=$	$\pi / 6$

Problem 3

State explicitly the domain and range of each function and sketch the function:
(a) $f(x)=3^{-x}-1$
(b) $f(x)=\log _{5}(x-1)$

Problem 3

(a) $f(x)=3^{-x}-1$

This is an exponential-type function, so the domain is \mathbb{R} and the range is $(-1, \infty)$, due to the vertical shift. Graph:

Problem 3

(b) $f(x)=\log _{5}(x-1)$

The logarithmic function requires a positive argument, hence the domain is $(1, \infty)$. The range is \mathbb{R}. Graph:

Problem 4

Solve the following equations for x :
(a) $e^{3 x-1}=e^{6 x+2}$
(b) $\ln (2-4 x)+\ln (2 x)=\ln (1-2 x)$

Problem 4

(a) $e^{3 x-1}=e^{6 x+2}$

The exponents must be the same:

$$
3 x-1=6 x+2 \Rightarrow-1-2=6 x-3 x \Rightarrow-3=3 x
$$

so the answer is $x=-1$.
(b) $\ln (2-4 x)+\ln (2 x)=\ln (1-2 x)$

Combine the logarithms on the left:

$$
\ln (2-4 x)+\ln (2 x)=\ln ((2-4 x) 2 x)=\ln (1-2 x)
$$

Problem 4

Now the arguments of the natural logarithm function on left and right must match:

$$
(2-4 x) 2 x=1-2 x \Rightarrow 4 x-8 x^{2}=1-2 x \Rightarrow 0=8 x^{2}-6 x+1
$$

Factor or use the quadratic formula:

$$
x=\frac{6 \pm \sqrt{(-6)^{2}-4(8)(1)}}{2(8)}=\frac{6 \pm \sqrt{36-32}}{16}=\frac{6 \pm 2}{16}
$$

so that either $x=1 / 2$ or $x=1 / 4$. But note that $x=1 / 2$ will not work, since in the original equation we would have an argument

$$
2-4\left(\frac{1}{2}\right)=0
$$

which is not in the domain of a logarithm function. The answer is just $x=1 / 4$.

Problem 5

Let the initial mass of a sample of Thorium-234 (half-life of 578 hours) be 1000 grams.
(a) Find $M(t)$, the mass of the sample at time $t>0$.
(b) How much Thorium is left after 100 hours?
(c) What is the time when the mass has reduced to 1% of the original mass?

Problem 5

(a) Find $M(t)$, the mass of the sample at time $t>0$.

We apply the model

$$
M(t)=1000 e^{k t}
$$

with t measured in hours. Half the original sample size would be 500 , which is $M(578)$, so we solve

$$
500=1000 e^{578 k} \Rightarrow \frac{1}{2}=e^{578 k} \Rightarrow \ln \left(\frac{1}{2}\right)=578 k
$$

so $k=\ln (1 / 2) / 578=-\ln (2) / 578$. Thus,

$$
M(t)=1000 e^{-t \ln (2) / 578}
$$

Problem 5

(b) How much Thorium is left after 100 hours?

We evaluate

$$
M(100)=1000 e^{-100 \ln (2) / 578}
$$

(c) What is the time when the mass has reduced to 1% of the original mass?

We solve

$$
10=1000 e^{-t \ln (2) / 578} \Rightarrow \frac{1}{100}=0.01=e^{-t \ln (2) / 578}
$$

Problem 5

Take the natural logarithm of both sides of the equation:

$$
\ln (0.01)=-t \frac{\ln (2)}{578} \Rightarrow t=-\frac{578 \ln (0.01)}{\ln (2)}
$$

If desired, you could insert

$$
\ln (0.01)=\ln \left(10^{-2}\right)=-2 \ln (10)
$$

so that

$$
t=\frac{2 \cdot 578 \ln (10)}{\ln (2)}
$$

