Math 1060Q: Exam 2 Review

Jeffrey Connors
University of Connecticut

November 3, 2014

Problem 1

Find a polynomial $p(x)$ such that $p(x) \rightarrow-\infty$ as $x \rightarrow \infty$ with roots and corresponding multiplicities given by:

root	$x=5$	$x=-4$	$x=1$
multiplicity	1	2	2

Problem 1

A solution is $p(x)=-(x-5)(x+4)^{2}(x-1)^{2}$. Graph:

Problem 2

Write $p(x)=3 x^{3}-5 x^{2}-11 x-3$ as a product of linear factors.
Hint: $x=-1$ is a root of $p(x)$.

Problem 2
Use long division to factor out $x+1$:

$$
\begin{array}{r}
3 x^{2}-8 x-3 \\
x+1 \sqrt{3 x^{3}-5 x^{2}-11 x-3} \\
\frac{-\left(3 x^{3}+3 x^{2}\right) \downarrow}{-8 x^{2}-11 x-3} \\
\frac{-\left(-8 x^{2}-8 x\right)}{-3 x-3} \\
\frac{-(-3 x-3)}{0}
\end{array}
$$

Problem 2

So $p(x)=(x+1)\left(3 x^{2}-8 x-3\right)$. We may use the quadratic formula to find any remaining roots (and hence linear factors):

$$
x=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(3)(-3)}}{(2)(3)}=\frac{8 \pm \sqrt{64+36}}{6}=\frac{8 \pm 10}{6}
$$

so $x=3$ and $x=-1 / 3$ are both roots. Then we know

$$
p(x)=a(x+1)(x-3)(x+1 / 3)
$$

where we determine a by comparing with the form of $p(x)$, from which we see $a=3$;

$$
p(x)=3(x+1)(x-3)(x+1 / 3)
$$

Problem 3

Find and properly label/classify all asymptotes of:
(a) $p(x)=\frac{x^{3}-6 x^{2}-x+1}{3 x^{4}+1}$ and
(b) $p(x)=\frac{x^{3}+x^{2}-3 x-3}{x^{2}-4}$.

Problem 3

(a) $p(x)=\frac{x^{3}-6 x^{2}-x+1}{3 x^{4}+1}$

Here the denominator is of higher-order than the numerator, hence $y=0$ is a horizontal asymptote. There are no other asymptotes.
(b) $p(x)=\frac{x^{3}+x^{2}-3 x-3}{x^{2}-4}$.

Vertical asymptotes will occur where $x^{2}-4=0$. Solving for x, we see that $x^{2}=4 \Rightarrow x= \pm 2$ are both vertical asymptotes. Since the numerator is one order higher than the denominator, there will be a slant asymptote. We use polynomial division to find it: $y=x+1$ (see next slide).

Problem 3

$$
\begin{aligned}
& \qquad x+1 \leftarrow \text { this is the } \\
& x^{2}-4 \sqrt{x^{3}+x^{2}-3 x-3} \text { asymptote } \\
& \frac{-\left(x^{3}-4 x\right)}{x^{2}+x-3} \\
& \frac{-\left(x^{2}-4\right)}{x+1} \text { remainder is } \\
& \text { loan } x^{2}-4
\end{aligned}
$$

Problem 4

Fill in the table: (angles are in radians)

θ	$7 \pi / 6$	$\pi / 4$
$\cos (\theta)$		
$\sin (\theta)$		
$\tan (\theta)$		
$\sec (\theta)$		
$\csc (\theta)$		

Problem 4

Fill in the table: (angles are in radians)

θ	$7 \pi / 6$	$\pi / 4$
$\cos (\theta)$	$-\sqrt{3} / 2$	$1 / \sqrt{2}$
$\sin (\theta)$	$-1 / 2$	$1 / \sqrt{2}$
$\tan (\theta)$	$1 / \sqrt{3}$	1
$\sec (\theta)$	$-2 / \sqrt{3}$	$\sqrt{2}$
$\csc (\theta)$	-2	$\sqrt{2}$

Problem 5

Calculate x as shown in each diagram:
(a)

(b)

Problem 5

(a)

Use the Law of Sines...

$$
\frac{\sin \left(60^{\circ}\right)}{3}=\frac{\sin \left(45^{\circ}\right)}{x} \Rightarrow \frac{\sqrt{3}}{6}=\frac{1}{x \sqrt{2}} .
$$

Solve for x :

$$
x \sqrt{2}=\frac{6}{\sqrt{3}}=\frac{6 \sqrt{3}}{3}=2 \sqrt{3},
$$

so $x=2 \sqrt{3} / \sqrt{2}=\sqrt{6}$.

Problem 5

(b)

Law of Cosines...

$$
\begin{aligned}
x^{2}=2^{2}+\left(\frac{1}{\sqrt{2}}\right)^{2} & -2 \frac{1}{\sqrt{2}} 2 \cos \left(45^{\circ}\right) \\
x^{2} & =4+\frac{1}{2}-\frac{4}{\sqrt{2}} \frac{1}{\sqrt{2}}=\frac{5}{2}
\end{aligned}
$$

$$
\Rightarrow x=\sqrt{\frac{5}{2}} .
$$

