Math 1060Q: Exam 1 Review

Jeffrey Connors
University of Connecticut

September 24, 2014

Problem 1

Find all values of x that satisfy the inequalities below. Express your answers using interval notation.
(a) $|x-5|>3$.

Solution: we solve two inequalities; the first is

$$
x-5>3 \Rightarrow x>8
$$

Then we solve

$$
x-5<-3 \Rightarrow x<2
$$

We take both answers together: $(-\infty, 2) \cup(8, \infty)$.

Problem 1

Find all values of x that satisfy the inequalities below. Express your answers using interval notation.
(b) $|-2 x+4| \leq 2$.

Solution: we solve two inequalities "simultaneously":

$$
-2 \leq-2 x+4 \leq 2 \Rightarrow-6 \leq-2 x \leq-2
$$

and remember to flip the inequality on the final step...

$$
3 \geq x \geq 1
$$

The answer is $[1,3]$.

Problem 2

Find the center and radius of the circle defined by $x^{2}+x+y^{2}-4 y+9 / 4=0$.
Solution: complete the square...

$$
\begin{aligned}
x^{2}+x+\left(\frac{1}{2}\right)^{2}+y^{2}-4 y+\left(\frac{-4}{2}\right)^{2} & =\left(\frac{1}{2}\right)^{2}+\left(\frac{-4}{2}\right)^{2}-\frac{9}{4} \\
\left(x+\frac{1}{2}\right)^{2}+(y-2)^{2} & =\frac{1}{4}+4-\frac{9}{4} \\
\left(x+\frac{1}{2}\right)^{2}+(y-2)^{2} & =\frac{1}{4}+\frac{16}{4}-\frac{9}{4}=\frac{8}{4}=2 .
\end{aligned}
$$

The center is $(-1 / 2,2)$ and the radius is $\sqrt{2}$.

Problem 3

Find the equation for the line passing through $(2,-3)$ that is:
(a) parallel to $5 y+10 x=1$.

Solution: the slope of the line we want is not clear; we must put the given line into a standard form:

$$
5 y=-10 x+1 \Rightarrow y=-2 x+\frac{1}{5}
$$

Now we see the slope must be $m=-2$. We are given a point that the desired line goes through, so apply point-slope form:

$$
y-(-3)=-2(x-2) \Rightarrow y+3=-2(x-2)
$$

Problem 3

Find the equation for the line passing through $(2,-3)$ that is:
(b) perpendicular to $y=-3 x+7$.

Solution: Since the given line is in slope-intercept form, we see that a perpendicular line would have slope $m=-1 /(-3)=1 / 3$. Again, since we are given a point, we apply point-slope form:

$$
y+3=\frac{1}{3}(x-2)
$$

Problem 4

Given the parabola $f(x)=3 x^{2}+18 x+11$, find:
(a) the standard form of the parabola

Solution: complete the square...

$$
\begin{aligned}
f(x)=3\left(x^{2}+6 x\right)+11 & =3\left(x^{2}+6 x+\left(\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}\right)+11 \\
& =3\left((x+3)^{2}-9\right)+11 \\
& =3(x+3)^{2}-27+11 \\
& =3(x+3)^{2}-16
\end{aligned}
$$

Problem 4

Given the parabola $f(x)=3 x^{2}+18 x+11$, find:
(b) the domain and range for $f(x)$.

Solution: Think of the graph, based upon the standard form. It is a parabola, so the domain is always $(-\infty, \infty)$. The range depends on whether the parabola opens up or down; in this case it opens up. Thus, note the y-coordinate of the vertex (bottom of the parabola) is -16 , hence the range is $[-16, \infty)$.

Problem 5

Given $f(x)=\frac{1}{x-5}$ and $g(x)=x^{2}+1$, find the domain of:
(a) $(f(g(x))$

Solution: Note this composition is

$$
f \circ g=\frac{1}{x^{2}-4}
$$

so we must not have $x^{2}-4=0$, i.e. $x \neq \pm 2$. The domain is $\{x \mid x \neq \pm 2\}$.
(b) $(g(f(x))$.

Solution: This composition is

$$
g \circ f=\left(\frac{1}{x-5}\right)^{2}+1
$$

so we cannot have $x=5$, otherwise there is no problem. Hence, the domain is $\{x \mid x \neq 5\}$.

