STRONG AND WEAK TYPE ESTIMATES FOR SINGULAR
INTEGRALS WITH RESPECT TO MEASURES SEPARATED BY
AD-REGULAR BOUNDARIES

V. CHOUSIONIS AND X. TOLSA

ABSTRACT. We prove weak and strong boundedness estimates for singular inte-
grals in R? with respect to (d — 1)-dimensional measures separated by Ahlfors-
David regular boundaries, generalizing and extending results of Chousionis and
Mattila. Our proof follows a different strategy based on new Calderén-Zygmund
decompositions which can be also used to extend a result of David.

1. INTRODUCTION

A Radon measure on R? has n-growth if there exists some constant ¢, such that
w(B(z,1)) < ¢,r™ for all z € R, r > 0. If there exists some constant ¢, such that

0;17“" < u(B(z,r)) <c,r" forall z € sptp, 0 <r < diam(sptpu),

then we say that p is n-Ahlfors-David regular, or n-AD regular. A set £ C R? is
n-AD regular if the n-dimensional Hausdorff measure restricted to E, denoted by
H"| g, is n-AD regular.

The space of finite complex Radon measures in U C R? is denoted by M (U). This
is a Banach space with the norm of the total variation: ||v|| = |v|(U).

We say that k(-,-) : R x R4\ {(x,y) € R xR?: 2 = y} — C is an n-dimensional
Calderon-Zygmund (CZ) kernel if there exist constants ¢ > 0 and n, with 0 < n < 1,
such that the following inequalities hold for all =,y € R%, x # y:

c

k(x, < — and
)] < =

cle—2a|"

Given a positive or complex Radon measure v on R? and a Calderén-Zygmund
kernel k, we define

Tr(x) := /k:(a:, y) dv(y), z € R\ spt.
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2 V. CHOUSIONIS AND X. TOLSA

This integral may not converge when x € sptr. For this reason, we consider the
following e-truncated operators T%, ¢ > 0:

TFu(z) = / k(x,y)dv(y), r € RY
lz—y|>e

Given a fixed positive Radon measure p on R? and f € L}, (1), we write

Tpf(x) =Tfp)(x), = €R\spt(fp),
and
Thof (@) = TE(f ().
If v is a positive Radon measures as well we say that T is bounded from LP(v) to
LP(p), 1 < p < oo, if the operators T} are bounded from LP(v) to L(u) uniformly

on € > 0. We also say that the operators T* are bounded from LP(v) to L»*(u) for
1 <p<ooifforall fe LP(v) and for all A > 0,

c
pla € BY: (L)@ > M < S g
uniformly on . Analogously T* is bounded from M (U), U C R? into L»*(u) if

there exists some constant ¢ such that for all v € M(U) and all A > 0,

cflv|

p{r € RY: |Try(x)| > A} < )

uniformly on € > 0.
Our first result reads as follows.

Theorem 1.1. Let U C R? be a domain with (d — 1)-AD regular boundary T'. Let
@, v two measures with (d — 1)-growth such that u(R¢\ U) = v(U) = 0. Let k be
a (d — 1)-dimensional Calderdn-Zygmund kernel such that the operator Tfld*wr :
L*(H* Y r) — LA(H|r) is bounded. Then,
(i) the operators T} : LP(v) — LP(u) and T} : LP(u) — LP(v) are bounded for
all 1 < p < o0, -
(ii) T* is bounded from M(R?\ U) to LY*°(u) and from M(U) to LY*°(v). In
particular, the operators Tj : L'(v) — L"(u) and T)} : L'(pn) — LY (v)
are bounded.

An n-AD-regular set F is n-uniformly rectifiable if there exist 6, M > 0 such that

for all z € E and all r > 0 there exists a Lipschitz mapping p from the ball B, (0, )
in R" to R? with Lip(p) < M such that

H" | g(B(z,r) N p(B,(0,7))) > Or".
Any convolution kernel k : R4\ {0} — R such that for all x € R%\ {0},
(1.1) k(—z) = —k(z) and |V/k(z)| <¢lz|™7, forj=0,1,2,
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defines a bounded operator in L?(H"|g) whenever E is an n-uniformly rectifiable
set. This was originally proved by David, see e.g. [D1] and [D2], under the additional
assumption |V7k(z)| < ¢;|z|™" 7 for all j > 0. A proof for all kernels satisfying
(1.1) can be found in [T2]. It follows that all such (d— 1)-dimensional kernels satisfy
the hypotheses of Theorem 1.1.

Relating the L?(p)-boundedness of T with the geometric structure of 4 is a hard
and largely unresolved problem. After David’s result in [D2], David and Semmes
proved a result that goes in the converse direction. In [DS] they showed that the
L?*(1) boundedness of all operators associated with convolution, odd, C* away
from the origin C'Z kernels imply that the measure p is n-uniformly rectifiable. The
David-Semmes conjecture, dating from 1991, asks if the L?(u)-boundedness of the
operators associated with just one of these kernels, specifically to the n-dimensional
Riesz kernel x/|x|"*1, suffices to imply n-uniform rectifiabilty. The conjecture has
been very recently resolved in [NToV] in the codimension 1 case, that is for n = d—1.
Mattila, Melnikov and Verdera in [MMV] had earlier proved the conjecture in the
case of 1-dimensional Riesz kernels. For all other dimensions and for other kernels
few things are known. There are several examples of kernels whose boundedness
does not imply rectifiability, see [C], [D4] and [H]. On the other hand in [CMPT)]
the kernels Re(z)*""!/|z|?", 2 € C,n € N, were considered and it was proved that
the L?-boundedness of the operators associated with any of these kernels implies
rectifiability. By now, these are the only known examples of convolution kernels not
directly related to the Riesz kernels with this property.

With the previous discussion in mind, Theorem 1.1 elaborates that the bounded-
ness of T/f : L?(p) — L*(v) with g and v being separated measures as in the theorem
holds much more generally than the boundedness of T} from L?(u) to L*(ut). Notice
that in our assumptions p and v can be any measures with n-growth as long as
they are separated in a reasonably nice manner. Furthermore we consider general
n-dimensional C'Z-kernels requiring less smoothness than in (1.1).

In [CM] it was shown that for a smaller class of kernels and for 1 < p < oo the
operators T* are bounded from LP(v) to LP(u) and from LP(u) to LP(v) whenever
p and v have (d — 1)-growth and they are separated by (d — 1)-Lipschitz graphs.
Theorem 1.1 extends the admissible boundaries from Lipschitz graphs to uniformly
rectifiable sets and moreover it covers the endpoint weak-(1,1) case, which did not
follow from the methods in [CM] and thus it was left untreated there.

Our proof follows an altogether different approach which makes use of new Calderon-
Zygmund decompositions partially inspired by the techniques in [T1]. We should
also remark that our proof, as well as the one in [CM], makes extended use of the
following theorem of David from [D1].

Theorem 1.2. Let u,v two measures with compact support such that p is n-AD
reqular and v has n-growth. Let k be an n-dimensional Calderon-Zygmund kernel



4 V. CHOUSIONIS AND X. TOLSA

such that T% : L*(p) — L*(p) is bounded. Then the operators Ty : LP(v) — LP(p)
and T* : LP(1) — LP(v) are bounded for all 1 < p < oo,

Using an example based on the four-corners Cantor set we prove that there exist 1-
growth measures v and p, g not AD-regular, such that the Cauchy singular integral
operator, which is associated with the Cauchy kernel 1/z, is bounded in L?(x) but
not from L?(u) to L?*(v). Hence we show that Theorem 1.2 fails without the AD-
regularity assumption on pu.

On the other hand the use of Calderén-Zygmund decompositions can be exploited
even further as only minor modifications in the proof of Theorem 1.1 allow us to
prove the following endpoint result which, as far as we know, is new.

Theorem 1.3. Under the assumptions of Theorem 1.2 the operator T* is bounded
Jrom M(sptp) to LY(v). In particular T - L' (p) — LY (v) is bounded.

Let us remark that the boundedness of the operator T* : M(sptv) — LY*®(v)
also holds. This is due to the fact that the boundedness of T[f in L?(u) implies the
boundedness from M(R?) to LY*(u) (see [T1] or [T3, Chapter 2], for example).

The paper is organised as follows. In Section 2 we prove the appropriate Calderén-
Zygmund decompositions needed for the proof of Theorem 1.1 and in Section 3 we
prove Theorem 1.1. The proof of Theorem 1.3 is outlined in Section 4. Finally in
Section 5 we prove that the AD-regularity assumption is essential for the proof of
Theorem 1.2.

Throughout the paper the letter C' stands for some constant which may change
its value at different occurrences. The notation A < B means that there is some
fixed constant C' such that A < CB, with C' as above. Also, A = B is equivalent to
A<SB< A

2. CALDERON-ZYGMUND DECOMPOSITIONS

For any set A C R and ¢ > 0 let N(A,¢) = {z € R?: dist(z, A) < e}

Theorem 2.1. Let U C R be a domain with (d — 1)-AD regular boundary T'. Let
v two measures with (d — 1)-growth and compact support such that p(R4\ U) =
v(U) = 0. Suppose that spty C N(I',diam(I")). Then for all f € LP(v), 1 < p < oo,
and for all A > (270 | £,/ ul) "
(a) There exists a family of almost disjoint balls {B;}; (that is, Y. xB, < c)
centered at sptv, with radius not exceeding 3 diam(I'), and a function h €
LY(H Y1) such that

(2.1) |fIPdv > (2B;),
B;

od+1 M

AP
(22 |1 < Sz n(B) fory >
nB;
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(2.3) friray, = hH e with |h] <ech HT' ae inT .

(b) For each i, let R; be a ball concentric with B;, with 10r(B;) < r(R;) <

30diam(I") and denote w; = Z):iiB . Then, there exists a family of functions
k

i with spt(p;) C R; N T and with constant sign satisfying

(2.4) / o dHT = / w; f dv,
r B;
(2.5) Z i < c1 A
(where ¢y is some fized constant), and

(2.6) lpill oo peam oy (R < e [ [ fldw.

B;

Proof. (a) Let
AP
F = {x € sptv : there exists B,, centered at x such that . | f|Pdv > 2d+1,u(2Bm)} ,

and G = sptv \ F. Notice that sptv \T' C F and G C T.
For all x € F' let B, be a maximal ball centered in x in the sense that

fPdv >

By
but for all concentric balls D, with r(D,) > 2r(B,)

)\P
| 1#rav < 55 uizp,).

Notice that this maximal ball exists. Indeed, if B! is centered at x, contains sptyu U
sptr, and satisfies (2.1), we have

AP
[ v = [ 1vrae > o) = g

which contradicts the initial assumption. Notice also that since sptv C N(I', diam(T"))
all the maximal balls B, satisfy r(B,) < 3diam(I).

Applying Besicovitch’s covering theorem we get an almost disjoint subfamily of
balls {B;}; C { B}, which covers F' and satisfy (2.1) and (2.2) by construction.

Let 7 = |f[Pv. Recall that, given @ > 1 and § > o™, a ball B(z,r) is called 7-
(a, B)-doubling if 7(aB(x,r)) < B7(B(z,7)). Denote by D the set of points z € sptr
such that there exists a sequence of 7-(2, 2%*1)-doubling balls P? centered at z such
that r(P?) — 0. By standard arguments it follows that 7(GND) = 7(D). Therefore
for 7-a.e. z € G, there exists a sequence of (2,2%+1)-7-doubling balls P, centered at
z, with r(Py) — 0, such that

p
od+1 1(2B,),

p

A
(Pk) 2d+1 M(2P/€)>
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and thus
’7‘(2Pk) S 2d+1’7'(Pk) S )\pu(2Pk)

This implies that 7| is absolutely continuous with respect to p and that 7|g= hyp
with |h1| < AP p-a.e., by the Lebesgue-Radon-Nikodym theorem (see [M1, p. 36-39],
for instance).

Notice that if A C U then hju(A) = 7(ANG) = 0 and if A € R?\ U then
7(GNA) = hiu(A) = 0. Therefore

2.7 Tlg=hiplr with 0<h; <X p—ae inl.
(2.7) I I 1t

Since p|r is supported on I' and it has (d — 1)-growth by standard differentiation
theory of measures, see e.g.[M1], it is absolutely continuous with respect to H4* |
with bounded Radon-Nikodym derivative. In other words, there exists a Borel
function hs such that

(2.8) plr=hoH r and 0< hy <c H7'p—ae.
By (2.7) and (2.8) we deduce that
(2.9) Tlo=hsH" ' [r

where hs = hy ho and |hs| < c\P, Hé l-ae. in T
Now for any ball B centered in G, using Holder’s inequality and (2.9),

1/p
e = [ gars ([ i) e

d—1
7

<7(BNG)YPr(B)7

1/p
< ( / hgd?-Ld_l) HIY T N BV
BNG

< (PR T A B) PRI A B = A1 (TN B).
Therefore 1| is absolutely continuous with respect to H?*|r and
(2.10) frle=hH"r,
where 0 < h < cA, p-a.e..
(b) Assume first that the family of balls { B;}; is finite. Then we may suppose that
this family is ordered in such a way that the sizes of the balls R; are non decreasing
(i.e. U(Rit1) > ¢(R;)). The functions ¢; that we will construct will be of the form
©i = a; Xa,, with a; € R and A4; C R;. We set A1 = Ry and ¢ = a3 xg,, where the

constant «; is chosen so that f31 w fdv = [ dH*
Suppose that o1, ..., pr_1 have been constructed, satisfy (2.4) and

k—1
Z |SOZ| S C1 )\7
=1
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where ¢ is some constant which will be fixed below. Let Ry, ..., Rs, be the sub-
family of Ry,..., Ry such that Ry, N Ry, # &. As {(R,;) < {(Ry) (because of the
non decreasing sizes of R;), we have Ry, C 3Ry.

Since the B;’s are maximal we have that

! / fPdy < =
e 1% —_—.
W(6B,) Jyp, T = A

Hence sptu N 6B; # () and thus I' N 6B; # () as well. Choosing any z; € I' N 6B;,
B(z;,d;) C R; for d; = r(R;) — 6r(B;). Since r(R;) — &r(R;) < d; < 30diam(I") and
I'is (d — 1)-AD-regular we deduce that

(2.11) HTH TN R) >HTHN B(zi, d;)) > Cr(R;).
Now taking into account that for i =1, . — 1, by (2.4),

/|¢Z|amd 1</ fldv,

and using the finite ovelarpping of the balls B,,, Holder’s inequality, the (d — 1)-
growth of 4 and v and (2.11), it follows that

Z/F\wsjldﬂd—1§2/&\f|du§/ | fldv

3Ry

1/p /
< ( / |f|pdl/) V(3R
3Ry

S C)\M(6Rk)1/pl/(3Rk)l/p/
S C)\’/’(Rk)d_l S 02)\ Hd_l(Rk N F)

Therefore, by Chebyshev,
H DS ol > 200} < 5o [ Dl fin™ <

Setting

HA (Rk N F)
— 5

Ay =TNRLN {Zj‘ﬁpsj| < QCQA},

we have HO Y (AL) > HE YR, NT)/2.
The constant oy is chosen so that for ¢r = oy xa, we have fr opdHT =
ka w.f dv. Then, using also (2.11), we obtain

Jo fldv 2y, ISl
B Hd_l(Ak) - Hd_l(Rk N F)

1/17 ’
) (I%Rk |f\pd1/> I/(Rk)l/p -\ ,LL(Rk)l/pV(Rk)l/pl
S (R ST Ry

(e

(2.12)

S Cg)\.
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Thus in Ay,
okl + D leal = lorl + Yo, < (262 +ex)A.
J J
Since Zf;ll lp;(z)] < e for o ¢ Ay, by the previous steps of the induction, if we
choose ¢; = 2¢y + c3, (2.5) follows.
Now it is easy to check that (2.6) also holds. Indeed we have

HSOiHLoo(’del Ir) T(Ri)d_l S C |OKZ‘ Hd_l(F N RZ) S C ‘Ozl‘ Hd_l(F N Al)
<c | f|dv.

/ w; f dv
Bi Bi

Suppose now that the collection of balls {B;}; is not finite. For each fixed N
we consider the family of balls {B;}1<;<y. Then, as above, we construct functions
oY, ... N with spt(p)) C R; satisfying

/%V dH! :/ w; f dv,
T B;

N
D lell < B,
=1

=C

and
IV ety (RS < / \fldv.
B;

Notice that the sign of ¢} equals the sign of [w;f dv and so it does not depend on
N.

Then there is a subsequence {¢%}.c;, which is convergent in the weak * topol-
ogy of L®(H%1[r) to some function ¢; € L®(H*!|r). Now we can consider a
subsequence {5}, with I C I; which is also convergent in the weak * topology
of L®(H41|r) to some function py € L>®(H4|r). In general, for each j we con-
sider a subsequence {gp?}ke 1; with I; C I;_; that converges in the weak * topology
of L®(H* ! |r) to some function p; € L®(H*|r). It is easily checked that the
functions ¢; satisfy the required properties. O

For a domain U, I" and y as in Theorem 2.1, and a complex measure v € M (R\U)
we have the following result analogous to the preceding one.

Theorem 2.2. Let U C R? be a domain with (d —1)-AD regqular boundary I'. Let p
be a measure with (d—1)-growth and compact support such that y(R4\U) = 0. Then
for allv € M(R4\U) such that sptv C N(I',diam(T")) and for all A > 2%+ ||v|| /||| -
(a) There exists a family of almost disjoint balls {B;}; (that is, Y . xB, < c)
centered at sptv, with radius not exceeding 3diam(I"), and a function g €

LY(H Y1) such that

(213) V(B > sy n(2B).



STRONG AND WEAK ESTIMATES FOR SINGULAR INTEGRALS 9

A
(2.14) v|(nB;) < 9dr1 n(2nB;)  forn > 2,

(2.15) vir=gH" ' ny, s with|gl <A HP ae inD .
(b) For each i, let R; be a ball concentric with B;, with 10r(B;) < r(R;) <
30diam(I") and denote w; = % Then, there exists a family of functions
k

i with spt(yp;) C R; N T and with constant sign satisfying

(2.16) /% dH* :/ w; dv,
r B;
(2.17) Z|%| <A

(where ¢y is some fized constant), and
(2.18) lpill oo a1 1oy 7 (R) ™ < e|w|(By).

This result can be derived from Theorem 2.1 by setting p = 1, taking f such that
v = fv|, and replacing the measure v there by |v|.

3. WEAK (p,p) BOUNDEDNESS

We will split the proof of Theorem 1.1 into two parts. We present first the proof of
the boundedness of T* from the space of measures M(R?\U) into L1*(u). Later we
will show that T% is bounded from LP(v) to LP**(u) for p > 1, by similar (although
more and technical) arguments. By Theorem 1.2 and interpolation it then follows
that T* is bounded from LP(v) to LP(u).

Theorem 3.1. Let U C R? be a domain with (d—1)-AD regular boundaryT. Let 11 be
a measure with (d—1)-growth such that p(R\U) = 0. Let k be a (d—1)-dimensional
Calderon-Zygmund kernel such that the operator Tfld*%r C L2(HE Y p) — L2(p) is
bounded. Then the operator T* is bounded from M(R?\ U) into LY*(u). That is
for allv € M(RE\ U) and for all A > 0,

(3.1) p({z € R ¢ [THv(x)] > A}) < ;!IVH’
uniformly on €.

To simplify notation, below we will write 7" instead of T*.

Proof. Suppose first that both p and v have compact support and sptv C N(I", diam(I")).
Clearly, we may assume that A\ > 2471 ||v|| /]| ]|

Let {B;}; be the almost disjoint family of balls of Theorem 2.2. Let R; = 10B;
and notice that r(R;) < 30diam(I") recalling that r(B;) < 3diam(I"). Then we can
write v = k + (3, with

K= VLRd\Ui Bi_'_ Z QOin_l LI‘
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and

p= Zﬁi = Z (wi v, —piH"! LF) )

i

where the functions ¢; satisfy (2.16), (2.17) (2.18) and w; = Z):%. Moreover,
° k

V|gaup,= gH [ with [g] < eX HP'-a.e. in T by (2.15). Therefore k = gH**|r
with g = >, ¢; + g. In particular, |g] < CX H?'-a.e. inT.

By (2.1) we have
&
(U 2B;) < Z VI(B) < 5 Il
So we have to prove that
&
(3.2) ,u{x e R\ J2B; : [Tuw(a)] > A} <.
We will first show that
(3.3) [ ey
Rd\Uk2Bi

Since (;(R;) f B, w;dy; — fr 0;dH4 =0 and spt(5;) C R; by standard estimates
we deduce that

L 1T < I < OB + [ okt < (B

RA\2R;

We will now check that

(3.4) | imalde <l

Observe that |T.(w;v|g,)(z)| < c|v|(B;)/r(B;) for any x € 2R; \ B;. Therefore,
1W(2R;

(3.5) |l < IR < opys,

Ri\2B; 7(B;)

because p has (d — 1)-growth and R; = 10B;.
On the other hand, using Cauchy-Schwarz and (2.6) we get

1/2
/ T ) d < ( / |THd1LF,E<wi>|2du) H(2R)?
2R;

1/2
(3.6) <c </F |%|2de_1) p(2R;)"?

B 1/2
< (Il oo HHO O R)) T pl2R0) 2

< cll@ill o gpea-pyr(Re) ™ < e [v|(By).
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Combining (3.5) and (3.6), we obtain (3.4). Then we deduce

Toldu< Y [ Talde<e 3B < bl
/Rd\Uk 2By, Z,: RANUy, 2B Z,: I
by the finite overlap of the balls B;. Thus (3.3) is proven. This implies that

d C
. » < - .
(3.7) u{x eR \liIQBZ |T.5(x)| > >\/2} < >\||1/||
Recalling that k = gH? ! |r= vIray, B, T2 S HT P we get

/ Gl dH < RN B) + 30 / or] dH
r ; —Jr
<l + S IB) < clvll,

by the finite overlap of the balls B;. Taking into account that |§| < ¢\ H% !-a.e. in
I' we get

u{:t e R\ J2Bi: |Tun(a)| > A/Q}
C C ~
(3.5) <5 [ 1l =55 [ T, P

< [laPanst < $ [lalan < Sl
Now, by (3.7) and (3.8) we get (3.2).
In the case that v, u have compact support but sptv ¢ N(I", diam(I")), we split
V=11 + Vo = V| N(T diam(T) TV [Ra\ N (D, diam (D)) -
For 14 we have shown that the estimate (3.1) holds. For vy, using that dist(sptve, ) >
diam(T") and that ||u|| < ¢,(diamI")?"!, we deduce that

To(a)| < € 22

~ W for all z € Spt/,L

Therefore,

C 1%
wfos moa)@ >0} < § [l < 0 g2l < ol

Suppose now that p is compactly supported but not v. Let Ny be such that
sptyu C B(0, Ny), and for some N > Ny, let vy = xpo,n) V. Then, for x € spt(u),

v|(RT\ B(0,N))
(N — No)iT

[Te(v —vn)(2)| < ¢
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Thus T.vy(z) — T.v(x) for all @ € spt(u), and since the estimate (3.1) holds for
vy, letting N — oo, we deduce that it also holds for v.
On the other hand, if y is not compactly supported, then for uy = | B(0, N),

pnir € RY: |Tw(z)| > A} < c@

uniformly on N, and then (3.1) follows in full generality. O

Thus we have proved (ii) of Theorem 1.1. For the proof of (i) we need to introduce
some additional notation and recall some well known results. If 4 is any non-negative
Radon measure, we define a radial maximal function by

Mpgpu(z) = sup '~ u(B(z,r)).

r>0

If f is a measurable function we also set
Migf(a) = Mall ) e) = supr'™ [ |l
r>0 B(z,r)

It follows (see for example [D3]) that if © and v have (d—1)-growth and 1 < p < oo
then for f € LP(u),

(3-9) ||M§f“Lp(u) < C(P, K, V)Hf”LP(u)-

We now define the g-radial Maximal operator for a measurable function f with
respect to a non-negative Radon measure p by

1/q
M (£)(x) = sup ( / y |f\qdu) |

r>0

For p > ¢, noticing that |g|? € LP/9(u) as g € LP(u) and using (3.9)
1M o (Do) = /(Mz’fé,q(g))pd’/ = /(Mz’é(|g|p))p/qd’/

S [ (g /2dn = gl

The following easy lemma can be found for example in [T1].

(3.10)

Lemma 3.2. Let i be a positive measure on R, x € R, and p,n > 0, such that
M(B(xv T)) < Corn
for allr > p. Then,

(3.11) / N ﬁdmw < en,m) @

_ x‘n—l—n pﬂ'

The statement in (i) follows from the next theorem and interpolation.
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Theorem 3.3. Let U C R be a domain with (d — 1)-AD regular boundary T.
Let p,v be two measures with (d — 1)-growth such that u(R\ U) = v(U) = 0.
Let k be a (d — 1)-dimensional Calderén-Zygmund kernel such that the operator
Tk, " : LY(H ) — L) is bounded for some 1 < q < co. Then the operator

T* is bounded from LP(v) into LP>®(u) for 1 < p < q. That is for all f € LP(v) and
for all A > 0,

(3.12) ple € R |TE(fr)(z)] > A} < Aprlle(y

uniformly on €.

Proof. Suppose first that both p and v have compact support and sptv C N(I", diam(T")).
Clearly, we may assume that \? > 2d+1||f||Lp(V /|| el]-

Let {B;}; be the almost disjoint family of balls of Lemma 2.1. Let R; = 10B; and
notice that r(R;) < 30diam(I"), since r(B;) < 3diam(I"). Then we write fv = k+ [,
with

k= fv|ray, B+ Z oM p

and

P30 3 o)

7

where the functions ¢; satisfy (2.4), (2.5) (2.6) and w; = ZXBZ' .
k XBy,

By Theorem 2.1, fv|gaup= FH* | with |h| < cA H%'-a.e. in I'. Therefore
k= hH*"|p with h = 3, ¢; + h and |h| < CA H'-ae. in T. By (2.1) we have

DR WEDES S | vrpa < [igpan
So it remains to prove that
ple e RONJ2B:: (L) @) > A} < 5 11,
We will first show that
(3.13) / .87 dp < e[| flI 7o)
R\, 2B;

By duality

1/p

RO\, 2B; spt(g)CRd\U B

gl 7 <1

/ T.(8) gdp| .
RO\, 2B;
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Then, for g as above, we write
[ n@ead <Y [ zallslds
RAY, 2B; p R4\2B;
BY NEIITETED Y
< Z/d\ |7.6;] lg\du+2/ T-(wifv|s,)
— JrRA\2R

Rz\sz

+ / Te(eH )| 9] du
> RZ\QB_\ ( [r)l g
— T+ [T+ III.

Therefore (3.13) will follow if we prove that for any function g such that spt(g) C
R?\ U, 2B; with 19l 1y < 1 we have I + [I+ IIT < cf| fl7n

To estimate I, using that, by (2.4), B:(R;) fB w; fdy — fr ©;dH¥1 = 0 and
spt(B;) C Ry, if ; stands for the center of B; and y ¢ 2R;, we get

/ (k(y,x) = k(y, z:)) dBi(x)

|z — ] r(R)"]| G
dfi(z) < W

TBi(y)| =

Y

R |y — @1
Hence, using also that [|5;|| < 2 fBz‘ | f|dv, we obtain

()| il
/Rd\le- il lgl du Ra\2p, [Y — TN l9()ldn(y)

([, S ) dvie)

From the estimate (3.11) applied to the measure p' = |g|u, taking into account
that p/(B(x,7)) < r¢'Mpu'(x), we deduce that

[, R dut) < Mjgto)

A\2R; ly

(3.14)

Hence by (3.14), Hélder’s inequality, and (3.9),
1= [l <3 [ 1) tgte) oo
— JRI\2R, — JB,

< / (@) Mbg(z) dv(x)
< 1 lre) 10 S 11w N9l iy < 1l
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To estimate 11, notice that for = € 2R; \ 2B;,
I Te(wifv ) (@) < o, r(B)' .

Therefore,

/ T (wif o s,)
2R;\2B;

< / o 11015 (B) g0 )
1l (v [ gt aute) ) i)
S/B |f ()| Mpg(y) dv(y).

So using (3.9) we get:

11—2/ T.(wifvls, ||g\du<2/ £ (9)| Miig(y) du(y)
S [ 1) Mag(y) dvly)

< N fllere) | Mpgll o)
S 1 llzeo) gl oy = I fllzr -

We now turn our attention to the term /1. Using Holder’s inequality for some
q < p' and the boundedness of Tya-1|,. in LY (H* ), we get

1/q
/\ ITe(%Hd_ltr)llgldué(/ |THd1LF,asoi|qdu) 19 xor e
R;\2B;

) 1/¢
< ( [ d%) 19 xom,
T

).

Using (2.6), we obtain

1/q
( / \soi\qcmd—l) g o
N

) < lpill ooy (BT

SJRLE / \fldv r(R

1/q
- / (@) (r(R»l—d / |g(y)|qdu(y)) ().
B; 2R;
Notice that, for x € B;,

(r(R»l-d / . |g(y)|qdu(y)) "t (o))

(W)

)
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Combining all the above estimates and using Holder’s inequality we obtain

=3 [ neH T Wl S [ 1M

2R;\2B;
5/|f(x)|M§,qg(fv)dV($) < v IME o9l 1 o)

But for p’ > ¢, M}, is bounded in LP(v), and thus
1115 [[f v
So (3.13) is proved. By Chebyshev’s inequality , this implies that

@15) e eBA\UJ2B0: 5G] > 2 b5 (1@ < 5 1

Now we have to estimate u{x € R?: |T.x(x)| > A\/2}. By Chebyshev’s inequality,
i{z € RE:|Tow(z)] > A2} < % / I TLk|Pdu

<= ( / IT2(fv )P+ / T, (3 ) pdu> .

Since v|r has (d — 1)-growth and it is supported on I, it is absolutely continuous
with respect to H?!|p. Hence there exists some function A/, 0 < k' <1 He¥ lae.
in I such that v|p= K'H|r. Furthermore, by Theorem 2.1 fv |Ri\UB; = hHI 1 p
with |h] < e, Hé t-ae. in I'. Thus f/H = hH |1 and so

/ T o o, Pyt = / Tyga sy, (f )P
< / PR aH < / PR A = / PP
N T

To estimate the last integral in (3.16) we argue again by duality. Given any
function g € LP (H4!|r) with 191l £ (3ga-1y < 1, we have by (2.6)

(3.16)

(3.17)

/ oillglare! < / loill i oyl gl AHE
N I'NR;

1 / / d—1 / HA1|
< — fldv gldH™ < fIM g)dv.
T(Ri>d_1 B, | | R, | | B, | | R ( )

Therefore,
1 1
/ Z gillgldHa < / FME (g)dw < | F oo IME T (9) 1o

S e l9l o gra=11py < 11 f o)
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Hence
P 1q,d—1
SIS et S s
ry

Together with (3.16) and (3.17), this yields

C
(3.18) ple € RY: (Tnle)] > M2} < < [1f

Thus, when v, u have compact support and sptv C N(I', diam(T")), (3.12) follows by
(3.15), (3.16), (3.17) and (3.18).

In the case that v, u have compact support but sptv ¢ N(I", diam(I")), we split

fv = fvi + fro = fr N diam@) FfV R\ N (T diam(r)-

For fv; we already know that the estimate (3.12) holds. For fis, we take into
account that dist(sptrs, sptu) > diam(I") and so, for x € spty,

)l S [ )

1 1/p'
< 1 fllro ( / o (y))
" le—y|>diam(T) 1T — Y[P (d-1)

1 1
S 1 zown) ez — Wllee g
P

diam(T")
Thus, using that ||u|| < ¢, (diamI)4~,
p il
/\Te(f;@)\pdu S Hf”LP(u)W
S AL

Therefore,
plo s L)@ > 0} < 55 [ RGPS 11,

Suppose now that p is compactly supported but not v. Let Ny be such that
sptp C B(0, Ny), and for some N > Ny, let vy = xp(o,n) V. Then, for x € spty,

11| yv R\ B(O, N)V”
T.(f(v—vN))(z §/ E(x,v)||f(y)|dv(y) < c .
T=(f (v —vn)) ()] Rd\B(QN)l (@, y)I[f (y)]dv(y) N = Nyl
Thus T.vn(z) — Tev(x) for all x € sptu, and since the estimate (3.1) holds for fry,
letting N — 0o, we deduce that it also holds for frv.
On the other hand, if y is not compactly supported, then for puy = pu|B(0, N),

p
1Az )
AP

pnv{z € R |TL(fr)(x)] > A} < ¢
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uniformly on N, and then (3.1) follows in full generality. O

4. REMARKS ABOUT THE PROOF OF THEOREM 1.3

Following the same scheme as in the previous two sections we obtain the following
theorem, which implies Theorem 1.2 by interpolation.

Theorem 4.1. Let ju, v two Radon measures in R? such that p is n-AD regqular and
v has n-growth. Let k be an n-dimensional C'Z-kernel such that Tf s a bounded
operator in L*(p). Then T} is bounded from LP(v) to LP>(p) and T} is bounded
from LP(u) to LP>=(v) for all 1 < p < co. Moreover,

(4.1) TF : M(spty) — LM°(v)
1$ also bounded.

For the proof of Theorem 4.1 we need the following Calderén-Zygmund decom-
position, which is analogous to the one from Theorem 2.1.

Theorem 4.2. Let p, v two measures with compact support such that p is n-AD reg-
ular, v has n-growth and sptv C N (sptu, diam(sptu)). Then for all f € LP(v), 1 <
p <00, and for all A > 271 || fII7, ., /1l ull:

(a) There exists a family of almost disjoint balls {B;}; (that is, > . x5, < c)

centered at sptv, with radius not exceeding 3 diam(sptu), and a function
h € L*(u) such that

AP
(1.2 [ 1> i uizB),
AP
(1.3 |15 < S nnBy forn >
(4.4) friray, B="hp with |h| <cA poae..
(b) For each i, let R; be a ball concentric with B;, with 10r(B;) < r(R;) <

XB;

30diam(sptu) and denote w; = S Then, there exists a family of func-
3 k
tions o; with spt(yp;) C R; and with constant sign satisfying

(4.5) /gpi dp = /Bi w; f dv,
(4.6) > el <A

(where ¢y is some fized constant), and

(4.7) il ooy w(Bi) < e [ [ fldw,



STRONG AND WEAK ESTIMATES FOR SINGULAR INTEGRALS 19
Lgi tgj (S 0
0o 0o
(‘* (‘W 00 oo
0o oo

QO £y FE>

FIGURE 1. The square Q° and the sets E; and E,, which appear in
the first stages of the construction of the corner quarters Cantor set.

The proof of Theorem 4.2 follows the same steps of the proof of Theorem 2.1 and
it also makes essential use of the AD-regularity of the measure u. Then we can
prove Theorem 4.1 by following a strategy analogous to the one for Theorem 3.3.
In every occasion where we needed to use the properties of the boundary I' in the
proof of Theorem 3.3, for the proof of Theorem 4.1 we use now the AD-regularity
of . We omit the details.

5. FAILURE OF THEOREM 1.2 FOR p NON AD-REGULAR

In the plane, we consider the so called corner quarters Cantor set. See Figure 1.
This set is constructed in the following way: consider a square Q" with side length
1. Now replace Q° by 4 squares Q;, i = 1,...,4, with side length 1/4 contained
in Q°, so that each Q) contains a different vertex of Q°. Analogously, in the next
stage each @} is replaced by 4 squares with side length 1/16 contained in @} so that
each one contains a different vertex of Q). So we will have 16 squares Q? of side
length 1/16. We proceed inductively (see Figure 1), and we set E, = (i, Q? and
E = ()", E,. This is the corner quarters Cantor set. It is not difficult to check
that 0 < H'(F) < cc.

In the complex plane, consider now the Cauchy singular integral operator C, which
is associated with the Cauchy kernel 1/z. It is well known that

||CH1LEnHL2(7-L1LE,I)—>L2(7-L1LE,1) ~n'/2.

See [M2], for example.
Given a Borel measure ¢ on C and A\ > 0, it is immediate to check that
1Cxo llL2000) > L2000) = A |CollL2(0)—L2(0)
and
1CollL2000) 5 12(0) = A2 1Co | 120y 120 -

Also, these L? norms are invariant by translations. So, for any z, € C and )\, =
n~Y2, we consider the measures

on=H' (20 + E,), ,u:ZAnan, V:Zan.

n>1 n>1
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Observe that if for each n > 1,

HC}‘nC’n||L2()\n0n)—>L2()\nan) ~ A\, n1/2 =1.

Then, if the points z, are chosen far enough from each other, then the supports
of the measures A, 0, will be very separated, and then it easily follows that C, is
bounded in L?(p). On the other hand,

1Cull 2()=20) = IChmon | L200mom)—L2(0n) = AL 20!/ = n!/4

and thus C,, is not bounded from L?(x) into L?(v).

)
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