
SINGULAR INTEGRALS ON SIERPINSKI GASKETS

VASILIS CHOUSIONIS

Abstract. We construct a class of singular integral operators associated with
homogeneous Calderón-Zygmund standard kernels on d-dimensional, d < 1,
Sierpinski gaskets Ed. These operators are bounded in L2(µd) and their
principal values diverge µd almost everywhere, where µd is the natural (d-
dimensional) measure on Ed.

1. Introduction

Given a Radon measure µ on Rn and a continuously differentiable kernel K :
Rn × Rn \ {(x, y) : x = y} → R that satisfies the antisymmetry condition

K(x, y) = −K(y, x) for x, y ∈ Rn, x 6= y,

the singular integral operator T associated with K and µ is formally given by

T (f)(x) =

∫
K(x, y)f(y)dµy.

Notice that the above integral does not usually exist when x ∈ sptµ. The trun-
cated singular integral operators Tε, ε > 0;

Tε(f)(x) =

∫
|x−y|>ε

K(x, y)f(y)dµy,

are considered in order to overcome this obstacle. In the same vein one considers
the maximal operator T ∗

T ∗(f)(x) = sup
ε>0
|Tε(f)(x)|

and the principal values of T (f) at every x ∈ Rn which, if they exist, are given
by

p.v.T (f)(x) = lim
ε→0

Tε(f)(x).

The singular integral operator T associated with µ and K is said to be bounded
in L2(µ) if there exists some constant C > 0 such that for f ∈ L2(µ) and ε > 0∫

|Tε(f)|2dµ ≤ C

∫
|f |2dµ.
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The natural question as to whether the L2(µ)-boundedness of the operator T
forces its principal values to exist µ almost everywhere has been considered in
many papers (see e.g. [MM], [MMV], [T], [D2], [Hu], [MV] and [Pr]). Even when
µ is an m-dimensional Ahlfors-David (AD) regular measure in Rn:

C−1rm ≤ µ(B(x, r)) ≤ Crm for x ∈ sptµ, 0 < r < diam(sptµ),

and K is any of the coordinate Riesz kernels:

Rm
i (x, y) =

xi − yi
|x− y|m+1

for i = 1, ..., n

the question remains open for m > 1.
When m = 1, or equivalently in the case of the Cauchy transform, the above

question has a positive answer by the results of Mattila, Melnikov and Verdera
(see [MM] and [MMV]). Later on, in [T], Tolsa improved the afore mentioned
results by removing the Ahlfors-David regularity assumption.

In different settings the answer to the above question can be negative. Let C
be the 1-dimensional four corners Cantor set and µ its natural (1-dimensional
Hausdorff) measure. David in [D2], constructed Calderón-Zygmund standard,
or simply CZ standard, kernels that define operators bounded in L2(µ) whose
principal values fail to exist µ almost everywhere. Although David’s kernels can
be chosen odd or even are not homogeneous of degree -1.

In this note we consider classical plane Sierpinski gaskets of Hausdorff dimen-
sion d, 0 < d < 1. For each of these d-AD regular sets Ed, we find families of CZ
standard, smooth, and antisymmetric kernels of the form

K(x, y) =
Ω((x− y)/|x− y|)

h(|x− y|)
(1.1)

where h is some increasing C∞ function satisfying the homogeneity condition

h(r) ' rd

for 0 < r < diam(Ed) and Ω is odd on the unit circle S1. If µd is the restric-
tion of the d-dimensional Hausdorff measure on Ed, these kernels define singular
integral operators bounded in L2(µd) whose principal values diverge µd almost
everywhere. The proof is based on the T (1)-theorem of David and Journé, proved
in [DJ], and the symmetry properties of Sierpinski gaskets allowing heavy can-
celations.

Remark 1.1. Unfortunately if in the above kernels we replace the function h(r)
by rd, where in this case the kernels would be d-homogeneous in the classical
sense, we cannot say if the corresponding operators are bounded (or not) in L2.
However their principal values diverge µd almost everywhere, as the proof of
Section 4 goes through with no changes.
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Remark 1.2. Modified slightly, the proof can be applied to many other symmetric
self similar sets, e.g. the four corners Cantor sets with Hausdorff dimension less
than 1 or the self similar sets discussed in [D2]. The dimensional restriction is
essential for the proof and it is not known to us if there exist CZ standard kernels,
of the same form as in (1.1), satisfying the homogeneity condition h(r) ≈ r,
that define singular integral operators bounded in L2 but whose principal values
diverge almost everywhere.

2. Notation and Setting

Let λ ∈ (0, 1/3) and consider the following three similitudes (depending on λ)
sλ1 , s

λ
2 , s

λ
3 : R2 → R2

• sλ1(x, y) = λ(x, y)
• sλ2(x, y) = λ(x, y) + (1− λ, 0)

• sλ3(x, y) = λ(x, y) + (1−λ
2
,
√

3
2

(1− λ)).

Let I = {1, 2, 3} and I∗ =
⋃
n≥1

In. The set I∗ can be partially ordered in the

following way, for α, β ∈ I∗,

α ≺ β ⇔ α ∈ In, β ∈ Ik k ≥ n and βbn = α.

Where βbn denotes the restriction of β in its first n coordinates. For α ∈ In, say
α = (i1, ..., in), define sλα : R2 → R2 through iteration

sλα = sλi1 ◦ s
λ
i2
◦ ... ◦ sλin .

Let A be the equilateral triangle with vertices (0, 0), (1, 0), (1/2,
√

3/2). Denote
sλα(A) = Sλα, I0 = {0} and sλ0 = id. The limit set of the iteration

Eλ =
⋂
j≥0

⋃
α∈Ij

Sλα

is self similar and in fact it is an λ-Sierpinski triangle with Hausdorff dimension

dλ = dimHEλ = − log 3

log λ
.

Notice that for λ ∈ (0, 1/3), dλ ∈ (0, 1). As a general property of self similar sets
the measures µλ = HdλbEλ are dλ-AD regular. Hence there exists a constant Cλ,
depending only on λ, such that for x ∈ Eλ and 0 < r ≤ 1,

C−1
λ rdλ ≤ µλ(B(x, r)) ≤ Cλr

dλ .

The spaces (Eλ, ρ, µλ), where ρ is the usual Euclidean metric, are simple ex-
amples of spaces of homogeneous type (See [Ch] for definition). We want to find
Calderón-Zygmund standard kernels on Eλ × Eλ \ {(x, y) : x = y} that define
bounded singular integral operators on L2(µλ). In that direction, for λ ∈ (0, 1/3),
we need to define two auxiliary families of functions.
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The functions Ωλ: For any pair (x, y) ∈ R2 × R2, x 6= y, denote by θ(x,y) ∈
[0, 2π) the angle formed by the vectors y−x and e1 = (1, 0). For every λ ∈ (0, 1/3)
there exists some positive number ελ such that

(i) For all x, y ∈ Eλ, x 6= y

θ(x,y) ∈ (
kπ

3
− ελ,

kπ

3
+ ελ) for some k ∈ {0, 1, .., 5}.

(ii) The intervals (
kπ

3
− ελ,

kπ

3
+ ελ) are disjoint for k ∈ {0, 1, .., 5}.

(iii) For any n ∈ N = {1, 2, ...} and α, β, γ ∈ In, α 6= β 6= γ, such that
αbn− 1 = βbn− 1 = γbn− 1:

(a) If x ∈ Sλα, y ∈ Sλβ , z ∈ Sλγ and θ(x,y) ∈ (
kπ

3
− ελ,

kπ

3
+ ελ), for

some k ∈ {0, 1, ..., 5}, then θ(x,z) ∈ (
mπ

3
− ελ,

mπ

3
+ ελ) for m =

(k + 1)mod6 or m = (k − 1)mod6.

(b) If x, z ∈ Sλα, y ∈ Sλβ and θ(x,y) ∈ (
kπ

3
− ελ,

kπ

3
+ ελ) then θ(z,y) ∈

(
kπ

3
− ελ,

kπ

3
+ ελ) as well.

Now we can define C∞ functions Ωλ on S1 satisfying

(i) Ωλ(z) = (−1)k for θ(z,0) ∈ (kπ
3
− ελ, kπ3 + ελ), k ∈ {0, 1, ..., 5},

(ii) Ωλ(−z) = −Ωλ(z) for every z ∈ S1.

Observe that the second condition also implies∫
S1

Ωλ(z)dσz = 0

where σ is the normalized surface measure on S1.
The functions hλ: Fix some λ ∈ (0, 1/3), and choose any function hλ :

(0,∞)→ R with the following properties,

(i) hλ is C∞,
(ii) hλ is increasing,

(iii) hλb[( 1
λ
− 2)λk, λk−1] = λ(k−1)dλ for every k ∈ N.

It follows that for r ∈ (0, 1], hλ (r) ≈ rdλ . In fact

rdλ/Cλ ≤ hλ (r) ≤ Cλr
dλ for 0 < r ≤ 1

where Cλ = λ−dλ .
Hence we are able, using the above families, to define appropriate kernels

Kλ : Eλ × Eλ\{(x, y) : x = y} → R

as

Kλ(x, y) =
Ωλ((x− y)/ |x− y|)

hλ(|x− y|)
.
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For the kernels Kλ there exists some constant C such that for all x, y, z ∈ Eλ,
x 6= y, satisfying |x− z| < (1− 2λ) |x− y|,

|Kλ(x, y)| ≤ C

|x− y|dλ
, (2.1)

Kλ(x, y)−Kλ(z, y) = 0 (2.2)

Condition (2.1) follows immediately from the definition of Kλ. To prove (2.2),
let k ∈ N∗ = {0, 1, ..} be the largest natural number such that x, y ∈ Sλα for some
α ∈ Ik. Therefore

x ∈ sλi (Sλα) and y ∈ sλj (Sλα)

for some i, j ∈ I, i 6= j. This implies that,

(
1

λ
− 2)λk+1 ≤ |y − x| ≤ λk. (2.3)

Since |x− z| < (1− 2λ) |x− y| we get

|x− z| < (1− 2λ)λk.

As
d(sλi (S

λ
α), sλq (S

λ
α)) = (1− 2λ)λk for q ∈ I, q 6= i,

and
Sλα =

⋃
p∈I

sλp(S
λ
α),

we deduce that z ∈ sλi (Sλα) and

(
1

λ
− 2)λk+1 ≤ |y − z| ≤ λk. (2.4)

Therefore as x, z ∈ sλi (Sλα) and y ∈ sλj (Sλα)

θ(x, y), θ(z, y) ∈
(
m
π

3
− ελ,m

π

3
+ ελ

)
(2.5)

for some m ∈ {0, 1, .., 5}. From (2.3), (2.4), (2.5) and the definition of hλ and
Ωλ we deduce that

hλ(|x− y|) = hλ(|z − y|) = λkdλ ,

and

Ωλ

(
x− y
|x− y|

)
= Ωλ

(
z − y
|z − y|

)
.

Hence
Kλ(x, y)−Kλ(z, y) = 0

and by antisymmetry
Kλ(y, x)−Kλ(y, z) = 0.

It follows that the kernels Kλ are CZ standard, in fact condition (2.2) is much
stronger than the ones appearing in the usual definitions of CZ standard kernels
(see e.g. [Ch], [D1] and [J]).
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As stated before, we want to show that the kernels define singular integral
operators that are bounded in L2(µλ), and examine their convergence properties.

3. L2 boundedness

Theorem 3.1. For all λ ∈ (0, 1/3) the maximal singular integral operators T ∗λ ,

T ∗λ (f)(x) = sup
ε>0

∣∣∣∣∫
|x−y|>ε

Kλ(x, y)f (y) dµλy

∣∣∣∣ ,
are bounded in L2(µλ).

Proof. The idea is to use the T (1) theorem of David and Journé in the context
of [D2]. Start by defining T nλ , for n ≥ 1, as

T nλ (f)(x) =

∫
|x−y|>λn

Kλ(x, y)f (y) dµλy.

We want to show that T nλ (1) =0 for all n ∈ N, by induction.
For n = 1: Let x ∈ Sλi ∩ Eλ for some i ∈ I. If j, k ∈ I \ {i}, j 6= k, we get

T 1
λ (1)(x) =

∫
|x−y|>λ

Kλ(x, y)dµλy

=

∫
Sλj ∪Sλk

Kλ(x, y)dµλy

=

∫
Sλj

Ωλ((x− y)/ |x− y|)
hλ(|x− y|)

dµλy +

∫
Sλk

Ωλ((x− y)/ |x− y|)
hλ(|x− y|)

dµλy.

Furthermore there exists some m ∈ {0, 1, .., 5} such that for y ∈ Sλj ,

Ωλ

(
x− y
|x− y|

)
= (−1)m

and for y ∈ Sλk ,

Ωλ

(
x− y
|x− y|

)
= (−1)m+1.

Hence

T 1
λ (1)(x) = (−1)m

∫
Sλj

1

hλ(|x− y|)
dµλy + (−1)m+1

∫
Sλk

1

hλ(|x− y|)
dµλy

But for y ∈ Sλj ∪ Sλk we have that 1 − 2λ ≤ |x− y| ≤ 1 and consequently
hλ(|x− y|) = 1. Thus

T 1
λ (1)(x) = (−1)mµλ(S

λ
j ) + (−1)m+1µλ(S

λ
k ) = 0.
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Suppose that T nλ (1) = 0 and let some x ∈ Eλ. We want to show that
T n+1
λ (1)(x) = 0. Let x ∈ Sλα for some α = (i1, i2, .., in, in+1) ∈ In+1. If
β = (i1, i2, ..in, j) and γ = (i1, i2, ..in, k) for j, k ∈ I \ {in+1}, j 6= k,

T n+1
λ (1)(x) =

∫
|x−y|>λn+1

Kλ(x, y)dµλy

=

∫
|x−y|>λn

Kλ(x, y)dµλy +

∫
Sλβ

Kλ(x, y)dµλy +

∫
Sλγ

Kλ(x, y)dµλy

=

∫
Sλβ

Ωλ((x− y)/ |x− y|)
hλ(|x− y|)

dµλy +

∫
Sλγ

Ωλ((x− y)/ |x− y|)
hλ(|x− y|)

dµλy,

since by the induction hypothesis

T nλ (1)(x) =

∫
|x−y|>λn

Kλ(x, y)dµλy = 0.

Using exactly the same argument as in the case for n = 1∫
Sλβ

Ωλ((x− y)/ |x− y|−1)

hλ(|x− y|)
dµλy +

∫
Sλγ

Ωλ((x− y)/ |x− y|−1)

hλ(|x− y|)
dµλy = 0.

Therefore T n+1
λ (1)(x) = 0, completing the induction. As T nλ (1) = 0 for all n ∈ N

the same holds for their transposes.
Due to the structure of the spaces (Eλ, µλ, ρ) the proof of the T (1) theorem in

this setting is essentially the same with the one appearing in [D1]. As commented
in [D1] and in [D2], in order to be able to use the T (1) theorem we need some
suitable decomposition of dyadic type, as in [Ch] and [D1], to replace the usual
dyadic cubes in Rn. In our setting the required such family R consists of all the
triangles appearing in every step of the iteration process, i.e.

Rλ
k = {Sλα : α ∈ Ik} for k ∈ N∗.

and
R = {Rλ

k : k ∈ N∗}.
In the assumptions of the original David-Journé T (1) theorem the operators
should also satisfy an extra condition the so called weak boundedness. This
condition is only used in the proof, as it appears in [D1], to show that there
exists some absolute constant C, such that for all dyadic cubes Q∣∣∣∣∫

Q

T (1Q)(x)dx

∣∣∣∣ ≤ C |Q| .

But since the operators T nλ are canonically associated with antisymmetric kernels
the weak boundedness comes for free, see e.g. [Ch].

Applying the T (1) theorem we derive that every element of the sequence
{T nλ }n∈N is bounded in L2(µλ) with bounds not depending on n. This fact en-
ables us to extract some linear L2(µλ)-bounded operator T as a weak limit of
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some subsequence of {T nλ }n∈N. Finally using the version of Cotlar’s inequality,
as it is stated in ([D1], p.59), we get that there exists some constant C such that
for all f ∈ L2(µλ)

T ∗λ (f)(x) ≤ C(Mλ(Tf)(x) +Mλ(|f |
√

2(x))

√
2
),

where Mλ is the Hardy-Littlewood maximal operator related to the measure µλ.
Therefore we conclude that T ∗λ is bounded in L2(µλ). �

4. Divergence of Principal Values

Theorem 4.1. Let λ ∈ (0, 1/3). For µλ almost every point in Eλ the principal
values of the singular integral operator Tλ do not exist.

Proof. Let λ ∈ (0, 1/3), we want to show that for µλ a.e x ∈ Eλ the limit

lim
ε→0

∣∣∣∣∫
R2\B(x,ε)

Kλ(x, y)dµλy

∣∣∣∣
does not exist. To every z ∈ Eλ assign naturally the code (zi)i∈N ∈ I∞ such that
{z} =

⋂
i≥1

Sλ(z1,..,zi) and consider the set

Dλ = {z ∈ Eλ : zi 6= zi+1 for infinitely many i′s} .

The set Dλ had full µλ measure as its complement Eλ\Dλ is countable. In fact
the set Eλ\Dλ consists of the vertices of every triangle Sλα, α ∈ I∗.

Notice that there exist some Cλ > 1 and some mλ ∈ N such that for every
z ∈ Dλ and every i ∈ N∗, satisfying zi 6= zi+1, there exist βi(z) ∈ I i−1+mλ and
positive numbers Ri(z) with the properties,

Figure A
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(i) βi(z) = (z1, ..., zi−1,

mλ times︷ ︸︸ ︷
y(z), .., y(z)) where y(z) ∈ I\{zi, zi+1},

(ii) Ri(z) ≈ λi,
(iii) (B(z, CλRi(z))\B(z, Ri(z))) ∩ Eλ = Sλβi(z).

See also Figure A. This geometric property of the sets Eλ forces the principal
values of Tλ to diverge.

To see this, let some x ∈ Dλ and denote Jx = {i ∈ N∗ : xi 6= xi+1}. For all
i ∈ Jx, ∣∣∣∣∫

R2\B(x,Ri(x))

Kλ(x, y)dµλy −
∫

R2\B(x,CλRi(x))

Kλ(x, y)dµλy

∣∣∣∣
=

∣∣∣∣∣
∫
B(x,CλRi(x))\B(x,Ri(x))

Ωλ((x− y) |x− y|−1)

hλ(|x− y|)
dµλy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Sλ
βi(x)

Ωλ((x− y) |x− y|−1)

hλ(|x− y|)
dµλy

∣∣∣∣∣
For all x ∈ Sλai(x) and y ∈ Sλβi(x), where αi(x) = (x1, ..., xi, xi+1),

(1− 2λ)λi−1 ≤ |x− y| ≤ λi−1

and

Ωλ

(
x− y
|x− y|

)
= (−1)εi

where εi = 1 or εi = −1. Hence∣∣∣∣∣
∫
Sλ
βi(x)

Ωλ((x− y) |x− y|−1)

hλ(|x− y|)
dµλy

∣∣∣∣∣ =

∫
Sλ
βi(x)

1

hλ(|x− y|)
dµλy

=
µλ(S

λ
βi(x)

)

(λi−1)dλ

=
(λi−1+mλ)dλ

(λi−1)dλ
= λmλdλ .

As Ri(x) ≈ λi → 0 we conclude that the principal values of Tλ do not exist µλ
a.e. �
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